BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31603461)

  • 1. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data.
    Chen R; Yang L; Goodison S; Sun Y
    Bioinformatics; 2020 Mar; 36(5):1476-1483. PubMed ID: 31603461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parallel computational framework for ultra-large-scale sequence clustering analysis.
    Zheng W; Mao Q; Genco RJ; Wactawski-Wende J; Buck M; Cai Y; Sun Y
    Bioinformatics; 2019 Feb; 35(3):380-388. PubMed ID: 30010718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SENSE: Siamese neural network for sequence embedding and alignment-free comparison.
    Zheng W; Yang L; Genco RJ; Wactawski-Wende J; Buck M; Sun Y
    Bioinformatics; 2019 Jun; 35(11):1820-1828. PubMed ID: 30346493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort.
    Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A
    Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data.
    Xu D; Zhang J; Xu H; Zhang Y; Chen W; Gao R; Dehmer M
    BMC Genomics; 2020 Sep; 21(1):650. PubMed ID: 32962626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment-free comparison of metagenomics sequences via approximate string matching.
    Chen J; Yang L; Li L; Goodison S; Sun Y
    Bioinform Adv; 2022; 2(1):vbac077. PubMed ID: 36388153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEMoS: a deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images.
    Wang Y; Hu C; Kwok T; Bain CA; Xue X; Gasser RB; Webb GI; Boussioutas A; Shen X; Daly RJ; Song J
    Bioinformatics; 2022 Sep; 38(17):4206-4213. PubMed ID: 35801909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning approach for cancer subtype classification using high-dimensional gene expression data.
    Shen J; Shi J; Luo J; Zhai H; Liu X; Wu Z; Yan C; Luo H
    BMC Bioinformatics; 2022 Oct; 23(1):430. PubMed ID: 36253710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks.
    Manatakis DV; Raghu VK; Benos PV
    Bioinformatics; 2018 Sep; 34(17):i848-i856. PubMed ID: 30423087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms.
    Xu M; Chai X; Muthakana H; Liang X; Yang G; Zeev-Ben-Mordehai T; Xing EP
    Bioinformatics; 2017 Jul; 33(14):i13-i22. PubMed ID: 28881965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions.
    Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J
    Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy-based consensus clustering for patient stratification.
    Liu H; Zhao R; Fang H; Cheng F; Fu Y; Liu YY
    Bioinformatics; 2017 Sep; 33(17):2691-2698. PubMed ID: 28369256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HEAL: an automated deep learning framework for cancer histopathology image analysis.
    Wang Y; Coudray N; Zhao Y; Li F; Hu C; Zhang YZ; Imoto S; Tsirigos A; Webb GI; Daly RJ; Song J
    Bioinformatics; 2021 Nov; 37(22):4291-4295. PubMed ID: 34009289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization.
    Xu T; Le TD; Liu L; Su N; Wang R; Sun B; Colaprico A; Bontempi G; Li J
    Bioinformatics; 2017 Oct; 33(19):3131-3133. PubMed ID: 28605519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype.
    He D; Xie L
    Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved survival analysis by learning shared genomic information from pan-cancer data.
    Kim S; Kim K; Choe J; Lee I; Kang J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i389-i398. PubMed ID: 32657401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.