These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31603465)

  • 1. Cancer classification of single-cell gene expression data by neural network.
    Kim BH; Yu K; Lee PCW
    Bioinformatics; 2020 Mar; 36(5):1360-1366. PubMed ID: 31603465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning.
    Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S
    Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stacking ensemble deep learning approach to cancer type classification based on TCGA data.
    Mohammed M; Mwambi H; Mboya IB; Elbashir MK; Omolo B
    Sci Rep; 2021 Aug; 11(1):15626. PubMed ID: 34341396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor cell type and gene marker identification by single layer perceptron neural network on single-cell RNA sequence data.
    Senapati B; DAS R
    J Biosci; 2024; 49():. PubMed ID: 38525885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Type Prediction and Classification Based on RNA-sequencing Data.
    Hsu YH; Si D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5374-5377. PubMed ID: 30441551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.
    Hu Y; Hase T; Li HP; Prabhakar S; Kitano H; Ng SK; Ghosh S; Wee LJ
    BMC Genomics; 2016 Dec; 17(Suppl 13):1025. PubMed ID: 28155657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of replacing the unreliable cDNA microarray measurements on the disease classification based on gene expression profiles and functional modules.
    Wang D; Lv Y; Guo Z; Li X; Li Y; Zhu J; Yang D; Xu J; Wang C; Rao S; Yang B
    Bioinformatics; 2006 Dec; 22(23):2883-9. PubMed ID: 16809389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pan-cancer classification by regularized multi-task learning.
    Hossain SMM; Khatun L; Ray S; Mukhopadhyay A
    Sci Rep; 2021 Dec; 11(1):24252. PubMed ID: 34930937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data.
    Luque-Baena RM; Urda D; Subirats JL; Franco L; Jerez JM
    Theor Biol Med Model; 2014 May; 11 Suppl 1(Suppl 1):S7. PubMed ID: 25077572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-level somatic mutation detection from single-cell RNA sequencing.
    Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y
    Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data.
    Yang B; Bao W; Chen B; Song D
    BioData Min; 2022 Jun; 15(1):13. PubMed ID: 35690842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.