These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31603466)

  • 1. SOLart: a structure-based method to predict protein solubility and aggregation.
    Hou Q; Kwasigroch JM; Rooman M; Pucci F
    Bioinformatics; 2020 Mar; 36(5):1445-1452. PubMed ID: 31603466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PON-Sol: prediction of effects of amino acid substitutions on protein solubility.
    Yang Y; Niroula A; Shen B; Vihinen M
    Bioinformatics; 2016 Jul; 32(13):2032-4. PubMed ID: 27153720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks.
    Gao J; Yang Y; Zhou Y
    Bioinformatics; 2016 Dec; 32(24):3768-3773. PubMed ID: 27551104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCooP: an accurate and fast predictor of protein stability curves as a function of temperature.
    Pucci F; Kwasigroch JM; Rooman M
    Bioinformatics; 2017 Nov; 33(21):3415-3422. PubMed ID: 29036273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine.
    Rawi R; Mall R; Kunji K; Shen CH; Kwong PD; Chuang GY
    Bioinformatics; 2018 Apr; 34(7):1092-1098. PubMed ID: 29069295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-sequence and profile-based prediction of RNA solvent accessibility using dilated convolutional neural network.
    Hanumanthappa AK; Singh J; Paliwal K; Singh J; Zhou Y
    Bioinformatics; 2021 Jan; 36(21):5169-5176. PubMed ID: 33106872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ccSOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli.
    Agostini F; Cirillo D; Livi CM; Delli Ponti R; Tartaglia GG
    Bioinformatics; 2014 Oct; 30(20):2975-7. PubMed ID: 24990610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepSol: a deep learning framework for sequence-based protein solubility prediction.
    Khurana S; Rawi R; Kunji K; Chuang GY; Bensmail H; Mall R
    Bioinformatics; 2018 Aug; 34(15):2605-2613. PubMed ID: 29554211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SoluProt: prediction of soluble protein expression in Escherichia coli.
    Hon J; Marusiak M; Martinek T; Kunka A; Zendulka J; Bednar D; Damborsky J
    Bioinformatics; 2021 Apr; 37(1):23-28. PubMed ID: 33416864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GATSol, an enhanced predictor of protein solubility through the synergy of 3D structure graph and large language modeling.
    Li B; Ming D
    BMC Bioinformatics; 2024 Jun; 25(1):204. PubMed ID: 38824535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of structural features and application to outer membrane protein identification.
    Yan R; Wang X; Huang L; Yan F; Xue X; Cai W
    Sci Rep; 2015 Jun; 5():11586. PubMed ID: 26104144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RSARF: prediction of residue solvent accessibility from protein sequence using random forest method.
    Pugalenthi G; Kandaswamy KK; Chou KC; Vivekanandan S; Kolatkar P
    Protein Pept Lett; 2012 Jan; 19(1):50-6. PubMed ID: 21919860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC.
    Cheng X; Lin WZ; Xiao X; Chou KC
    Bioinformatics; 2019 Feb; 35(3):398-406. PubMed ID: 30010789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins.
    Heffernan R; Dehzangi A; Lyons J; Paliwal K; Sharma A; Wang J; Sattar A; Zhou Y; Yang Y
    Bioinformatics; 2016 Mar; 32(6):843-9. PubMed ID: 26568622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins.
    Planas-Iglesias J; Borko S; Swiatkowski J; Elias M; Havlasek M; Salamon O; Grakova E; Kunka A; Martinovic T; Damborsky J; Martinovic J; Bednar D
    Nucleic Acids Res; 2024 Jul; 52(W1):W159-W169. PubMed ID: 38801076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.