These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31603468)

  • 1. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting.
    Yu B; Qiu W; Chen C; Ma A; Jiang J; Zhou H; Ma Q
    Bioinformatics; 2020 Feb; 36(4):1074-1081. PubMed ID: 31603468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier.
    Liu Y; Jin S; Song L; Han Y; Yu B
    J Mol Graph Model; 2021 Sep; 107():107962. PubMed ID: 34198216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis.
    Wang X; Zhang Y; Yu B; Salhi A; Chen R; Wang L; Liu Z
    Comput Biol Med; 2021 Jul; 134():104516. PubMed ID: 34119922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepPred-SubMito: A Novel Submitochondrial Localization Predictor Based on Multi-Channel Convolutional Neural Network and Dataset Balancing Treatment.
    Wang X; Jin Y; Zhang Q
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net.
    Liu Y; Yu Z; Chen C; Han Y; Yu B
    Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier.
    Chen C; Zhang Q; Yu B; Yu Z; Lawrence PJ; Ma Q; Zhang Y
    Comput Biol Med; 2020 Aug; 123():103899. PubMed ID: 32768046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique.
    Wang X; Yu B; Ma A; Chen C; Liu B; Ma Q
    Bioinformatics; 2019 Jul; 35(14):2395-2402. PubMed ID: 30520961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Two-Step Feature Selection Method to Predict Cancerlectins by Multiview Features and Synthetic Minority Oversampling Technique.
    Yang R; Zhang C; Zhang L; Gao R
    Biomed Res Int; 2018; 2018():9364182. PubMed ID: 29568772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SubMito-PSPCP: predicting protein submitochondrial locations by hybridizing positional specific physicochemical properties with pseudoamino acid compositions.
    Du P; Yu Y
    Biomed Res Int; 2013; 2013():263829. PubMed ID: 24027753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein submitochondrial localization from integrated sequence representation and SVM-based backward feature extraction.
    Li L; Yu S; Xiao W; Li Y; Hu W; Huang L; Zheng X; Zhou S; Yang H
    Mol Biosyst; 2015 Jan; 11(1):170-7. PubMed ID: 25335193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTB-PPI: Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting.
    Yu B; Chen C; Zhou H; Liu B; Ma Q
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):582-592. PubMed ID: 33515750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of submitochondrial proteins localization based on Gene Ontology.
    Wang J; Zhou H; Wang Y; Xu M; Yu Y; Wang J; Liu Y
    Comput Biol Med; 2023 Dec; 167():107589. PubMed ID: 37883850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach.
    Tian B; Wu X; Chen C; Qiu W; Ma Q; Yu B
    J Theor Biol; 2019 Feb; 462():329-346. PubMed ID: 30452960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence.
    Du P; Li Y
    BMC Bioinformatics; 2006 Nov; 7():518. PubMed ID: 17134515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.
    Ahmad K; Waris M; Hayat M
    J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC.
    Zhang S; Duan X
    J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iT3SE-PX: Identification of Bacterial Type III Secreted Effectors Using PSSM Profiles and XGBoost Feature Selection.
    Ding C; Han H; Li Q; Yang X; Liu T
    Comput Math Methods Med; 2021; 2021():6690299. PubMed ID: 33505516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.