BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 31603468)

  • 1. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting.
    Yu B; Qiu W; Chen C; Ma A; Jiang J; Zhou H; Ma Q
    Bioinformatics; 2020 Feb; 36(4):1074-1081. PubMed ID: 31603468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier.
    Liu Y; Jin S; Song L; Han Y; Yu B
    J Mol Graph Model; 2021 Sep; 107():107962. PubMed ID: 34198216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis.
    Wang X; Zhang Y; Yu B; Salhi A; Chen R; Wang L; Liu Z
    Comput Biol Med; 2021 Jul; 134():104516. PubMed ID: 34119922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepPred-SubMito: A Novel Submitochondrial Localization Predictor Based on Multi-Channel Convolutional Neural Network and Dataset Balancing Treatment.
    Wang X; Jin Y; Zhang Q
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net.
    Liu Y; Yu Z; Chen C; Han Y; Yu B
    Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier.
    Chen C; Zhang Q; Yu B; Yu Z; Lawrence PJ; Ma Q; Zhang Y
    Comput Biol Med; 2020 Aug; 123():103899. PubMed ID: 32768046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique.
    Wang X; Yu B; Ma A; Chen C; Liu B; Ma Q
    Bioinformatics; 2019 Jul; 35(14):2395-2402. PubMed ID: 30520961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Two-Step Feature Selection Method to Predict Cancerlectins by Multiview Features and Synthetic Minority Oversampling Technique.
    Yang R; Zhang C; Zhang L; Gao R
    Biomed Res Int; 2018; 2018():9364182. PubMed ID: 29568772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SubMito-PSPCP: predicting protein submitochondrial locations by hybridizing positional specific physicochemical properties with pseudoamino acid compositions.
    Du P; Yu Y
    Biomed Res Int; 2013; 2013():263829. PubMed ID: 24027753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein submitochondrial localization from integrated sequence representation and SVM-based backward feature extraction.
    Li L; Yu S; Xiao W; Li Y; Hu W; Huang L; Zheng X; Zhou S; Yang H
    Mol Biosyst; 2015 Jan; 11(1):170-7. PubMed ID: 25335193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTB-PPI: Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting.
    Yu B; Chen C; Zhou H; Liu B; Ma Q
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):582-592. PubMed ID: 33515750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of submitochondrial proteins localization based on Gene Ontology.
    Wang J; Zhou H; Wang Y; Xu M; Yu Y; Wang J; Liu Y
    Comput Biol Med; 2023 Dec; 167():107589. PubMed ID: 37883850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach.
    Tian B; Wu X; Chen C; Qiu W; Ma Q; Yu B
    J Theor Biol; 2019 Feb; 462():329-346. PubMed ID: 30452960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence.
    Du P; Li Y
    BMC Bioinformatics; 2006 Nov; 7():518. PubMed ID: 17134515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.
    Ahmad K; Waris M; Hayat M
    J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC.
    Zhang S; Duan X
    J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iT3SE-PX: Identification of Bacterial Type III Secreted Effectors Using PSSM Profiles and XGBoost Feature Selection.
    Ding C; Han H; Li Q; Yang X; Liu T
    Comput Math Methods Med; 2021; 2021():6690299. PubMed ID: 33505516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.