These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31603468)

  • 21. SXGBsite: Prediction of Protein-Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting.
    Zhao Z; Xu Y; Zhao Y
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31771119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the multi-label protein subcellular localization through multi-information fusion and MLSI dimensionality reduction based on MLFE classifier.
    Liu Y; Jin S; Gao H; Wang X; Wang C; Zhou W; Yu B
    Bioinformatics; 2022 Feb; 38(5):1223-1230. PubMed ID: 34864897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PredGly: predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization.
    Yu J; Shi S; Zhang F; Chen G; Cao M
    Bioinformatics; 2019 Aug; 35(16):2749-2756. PubMed ID: 30590442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting.
    Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A
    Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor.
    Cai L; Ren X; Fu X; Peng L; Gao M; Zeng X
    Bioinformatics; 2021 May; 37(8):1060-1067. PubMed ID: 33119044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features.
    Le NQK; Do DT; Nguyen TT; Le QA
    Gene; 2021 Jun; 787():145643. PubMed ID: 33848577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DBP-PSSM: Combination of Evolutionary Profiles with the XGBoost Algorithm to Improve the Identification of DNA-binding Proteins.
    Zhang Y; Chen P; Gao Y; Ni J; Wang X
    Comb Chem High Throughput Screen; 2022; 25(1):3-12. PubMed ID: 33238837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network.
    Chen C; Shi H; Jiang Z; Salhi A; Chen R; Cui X; Yu B
    Comput Biol Med; 2021 Sep; 136():104676. PubMed ID: 34375902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features.
    Li B; Cai L; Liao B; Fu X; Bing P; Yang J
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach.
    Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H
    Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CrossFuse-XGBoost: accurate prediction of the maximum recommended daily dose through multi-feature fusion, cross-validation screening and extreme gradient boosting.
    Li Q; He Y; Pan J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38216539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. StackDPPred: a stacking based prediction of DNA-binding protein from sequence.
    Mishra A; Pokhrel P; Hoque MT
    Bioinformatics; 2019 Feb; 35(3):433-441. PubMed ID: 30032213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iDeepSubMito: identification of protein submitochondrial localization with deep learning.
    Hou Z; Yang Y; Li H; Wong KC; Li X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34337657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HSM6AP: a high-precision predictor for the Homo
    Li J; He S; Guo F; Zou Q
    RNA Biol; 2021 Nov; 18(11):1882-1892. PubMed ID: 33446014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictions of Apoptosis Proteins by Integrating Different Features Based on Improving Pseudo-Position-Specific Scoring Matrix.
    Ruan X; Zhou D; Nie R; Guo Y
    Biomed Res Int; 2020; 2020():4071508. PubMed ID: 32420339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition.
    Khan A; Majid A; Hayat M
    Comput Biol Chem; 2011 Aug; 35(4):218-29. PubMed ID: 21864791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC.
    Zhang S; Liang Y
    J Theor Biol; 2018 Nov; 457():163-169. PubMed ID: 30179589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection.
    Sang X; Xiao W; Zheng H; Yang Y; Liu T
    Comput Math Methods Med; 2020; 2020():1384749. PubMed ID: 32300371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.