These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 31603772)

  • 1. Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
    Wu N; Phang J; Park J; Shen Y; Huang Z; Zorin M; Jastrzebski S; Fevry T; Katsnelson J; Kim E; Wolfson S; Parikh U; Gaddam S; Lin LLY; Ho K; Weinstein JD; Reig B; Gao Y; Toth H; Pysarenko K; Lewin A; Lee J; Airola K; Mema E; Chung S; Hwang E; Samreen N; Kim SG; Heacock L; Moy L; Cho K; Geras KJ
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1184-1194. PubMed ID: 31603772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a Machine Learn from Radiologists' Visual Search Behaviour and Their Interpretation of Mammograms-a Deep-Learning Study.
    Mall S; Brennan PC; Mello-Thoms C
    J Digit Imaging; 2019 Oct; 32(5):746-760. PubMed ID: 31410677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning method for classifying mammographic breast density categories.
    Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S
    Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.
    Schaffter T; Buist DSM; Lee CI; Nikulin Y; Ribli D; Guan Y; Lotter W; Jie Z; Du H; Wang S; Feng J; Feng M; Kim HE; Albiol F; Albiol A; Morrell S; Wojna Z; Ahsen ME; Asif U; Jimeno Yepes A; Yohanandan S; Rabinovici-Cohen S; Yi D; Hoff B; Yu T; Chaibub Neto E; Rubin DL; Lindholm P; Margolies LR; McBride RB; Rothstein JH; Sieh W; Ben-Ari R; Harrer S; Trister A; Friend S; Norman T; Sahiner B; Strand F; Guinney J; Stolovitzky G; ; Mackey L; Cahoon J; Shen L; Sohn JH; Trivedi H; Shen Y; Buturovic L; Pereira JC; Cardoso JS; Castro E; Kalleberg KT; Pelka O; Nedjar I; Geras KJ; Nensa F; Goan E; Koitka S; Caballero L; Cox DD; Krishnaswamy P; Pandey G; Friedrich CM; Perrin D; Fookes C; Shi B; Cardoso Negrie G; Kawczynski M; Cho K; Khoo CS; Lo JY; Sorensen AG; Jung H
    JAMA Netw Open; 2020 Mar; 3(3):e200265. PubMed ID: 32119094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Word-Level Classification of Screening Mammography Reports Using a Neural Network Sequence Labeling Approach.
    Short RG; Bralich J; Bogaty D; Befera NT
    J Digit Imaging; 2019 Oct; 32(5):685-692. PubMed ID: 30338478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework to classify breast density with noisy labels regularization.
    Lopez-Almazan H; Javier Pérez-Benito F; Larroza A; Perez-Cortes JC; Pollan M; Perez-Gomez B; Salas Trejo D; Casals M; Llobet R
    Comput Methods Programs Biomed; 2022 Jun; 221():106885. PubMed ID: 35594581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Performance Deep Neural Network Model for BI-RADS Classification of Screening Mammography.
    Tsai KJ; Chou MC; Li HM; Liu ST; Hsu JH; Yeh WC; Hung CM; Yeh CY; Hwang SH
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
    Rodriguez-Ruiz A; Lång K; Gubern-Merida A; Teuwen J; Broeders M; Gennaro G; Clauser P; Helbich TH; Chevalier M; Mertelmeier T; Wallis MG; Andersson I; Zackrisson S; Sechopoulos I; Mann RM
    Eur Radiol; 2019 Sep; 29(9):4825-4832. PubMed ID: 30993432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
    Al-Antari MA; Al-Masni MA; Kim TS
    Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer.
    Becker AS; Marcon M; Ghafoor S; Wurnig MC; Frauenfelder T; Boss A
    Invest Radiol; 2017 Jul; 52(7):434-440. PubMed ID: 28212138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization.
    Shen Y; Wu N; Phang J; Park J; Liu K; Tyagi S; Heacock L; Kim SG; Moy L; Cho K; Geras KJ
    Med Image Anal; 2021 Feb; 68():101908. PubMed ID: 33383334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DV-DCNN: Dual-view deep convolutional neural network for matching detected masses in mammograms.
    AlGhamdi M; Abdel-Mottaleb M
    Comput Methods Programs Biomed; 2021 Aug; 207():106152. PubMed ID: 34058629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
    Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J
    Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts.
    van Zelst JCM; Tan T; Clauser P; Domingo A; Dorrius MD; Drieling D; Golatta M; Gras F; de Jong M; Pijnappel R; Rutten MJCM; Karssemeijer N; Mann RM
    Eur Radiol; 2018 Jul; 28(7):2996-3006. PubMed ID: 29417251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.
    Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK
    J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multitask deep learning on mammography to predict extensive intraductal component in invasive breast cancer.
    Tsai HY; Kao YW; Wang JC; Tsai TY; Chung WS; Hsu JS; Hou MF; Weng SF
    Eur Radiol; 2024 Apr; 34(4):2593-2604. PubMed ID: 37812297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.