These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31603796)

  • 21. rPAC: Route based pathway analysis for cohorts of gene expression data sets.
    Joshi P; Basso B; Wang H; Hong SH; Giardina C; Shin DG
    Methods; 2022 Feb; 198():76-87. PubMed ID: 34628030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.
    Seal DB; Das V; Goswami S; De RK
    Genomics; 2020 Jul; 112(4):2833-2841. PubMed ID: 32234433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer.
    Li JY; Li CJ; Lin LT; Tsui KH
    Cancer Control; 2020; 27(1):1073274820976671. PubMed ID: 33297760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using empirical biological knowledge to infer regulatory networks from multi-omics data.
    Pačínková A; Popovici V
    BMC Bioinformatics; 2022 Aug; 23(1):351. PubMed ID: 35996085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrative pathway enrichment analysis of multivariate omics data.
    Paczkowska M; Barenboim J; Sintupisut N; Fox NS; Zhu H; Abd-Rabbo D; Mee MW; Boutros PC; ; Reimand J;
    Nat Commun; 2020 Feb; 11(1):735. PubMed ID: 32024846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data.
    Lee S; Park Y; Kim S
    Methods; 2017 Jul; 124():13-24. PubMed ID: 28579402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring causal genomic alterations in breast cancer using gene expression data.
    Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J
    BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Executable pathway analysis using ensemble discrete-state modeling for large-scale data.
    Palli R; Palshikar MG; Thakar J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007317. PubMed ID: 31479446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-omics data.
    Liu Q; Cheng B; Jin Y; Hu P
    J Biomed Inform; 2022 Jan; 125():103958. PubMed ID: 34839017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of significantly mutated subnetworks in the breast cancer genome.
    Ajwad R; Domaratzki M; Liu Q; Feizi N; Hu P
    Sci Rep; 2021 Jan; 11(1):642. PubMed ID: 33436820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel non-negative Bayesian stacking modeling method for Cancer survival prediction using high-dimensional omics data.
    Shen J; Wang S; Sun H; Huang J; Bai L; Wang X; Dong Y; Tang Z
    BMC Med Res Methodol; 2024 May; 24(1):105. PubMed ID: 38702624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer.
    Tanioka M; Fan C; Parker JS; Hoadley KA; Hu Z; Li Y; Hyslop TM; Pitcher BN; Soloway MG; Spears PA; Henry LN; Tolaney S; Dang CT; Krop IE; Harris LN; Berry DA; Mardis ER; Winer EP; Hudis CA; Carey LA; Perou CM
    Clin Cancer Res; 2018 Nov; 24(21):5292-5304. PubMed ID: 30037817
    [No Abstract]   [Full Text] [Related]  

  • 36. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations.
    Huang Z; Johnson TS; Han Z; Helm B; Cao S; Zhang C; Salama P; Rizkalla M; Yu CY; Cheng J; Xiang S; Zhan X; Zhang J; Huang K
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):41. PubMed ID: 32241264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.
    Jang Y; Yu N; Seo J; Kim S; Lee S
    Biol Direct; 2016 Mar; 11(1):10. PubMed ID: 26987515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A framework using topological pathways for deeper analysis of transcriptome data.
    Zhao Y; Piekos S; Hoang TH; Shin DG
    BMC Genomics; 2020 Mar; 21(Suppl 1):834. PubMed ID: 32138666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.
    Acharya LR; Judeh T; Wang G; Zhu D
    Bioinformatics; 2012 Feb; 28(4):546-56. PubMed ID: 22199386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.