These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31603825)

  • 41. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive control of a serial-in-parallel robotic rehabilitation device.
    Pehlivan AU; Sergi F; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650412. PubMed ID: 24187231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive Learning based Upper-Limb Rehabilitation Training System with Collaborative Robot.
    Lim JH; He K; Yi Z; Hou C; Zhang C; Sui Y; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.
    Maldonado B; Mendoza M; Bonilla I; Reyna-GutiƩrrez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3578-81. PubMed ID: 26737066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation.
    Gasperina SD; Ratschat AL; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941246
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.
    Brokaw EB; Lum PS; Cooper RA; Brewer BR
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650384. PubMed ID: 24187203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper.
    Zhu J; Hu H; Zhao W; Yang J; Ouyang Q
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.