These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 31604934)
1. Understanding resonant charge transport through weakly coupled single-molecule junctions. Thomas JO; Limburg B; Sowa JK; Willick K; Baugh J; Briggs GAD; Gauger EM; Anderson HL; Mol JA Nat Commun; 2019 Oct; 10(1):4628. PubMed ID: 31604934 [TBL] [Abstract][Full Text] [Related]
2. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Quek SY; Khoo KH Acc Chem Res; 2014 Nov; 47(11):3250-7. PubMed ID: 24933289 [TBL] [Abstract][Full Text] [Related]
3. On the theory of charge transport and entropic effects in solvated molecular junctions. Sowa JK; Marcus RA J Chem Phys; 2021 Jan; 154(3):034110. PubMed ID: 33499636 [TBL] [Abstract][Full Text] [Related]
4. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions: A unified framework. Sowa JK; Mol JA; Briggs GAD; Gauger EM J Chem Phys; 2018 Oct; 149(15):154112. PubMed ID: 30342434 [TBL] [Abstract][Full Text] [Related]
5. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations. Nocera A; Perroni CA; Ramaglia VM; Cataudella V Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736 [TBL] [Abstract][Full Text] [Related]
6. Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating. Yuan L; Wang L; Garrigues AR; Jiang L; Annadata HV; Anguera Antonana M; Barco E; Nijhuis CA Nat Nanotechnol; 2018 Apr; 13(4):322-329. PubMed ID: 29581549 [TBL] [Abstract][Full Text] [Related]
7. From Liouville to Landauer: Electron transport and the bath assumptions made along the way. Bialas D; Jorn R J Chem Phys; 2024 May; 160(18):. PubMed ID: 38721907 [TBL] [Abstract][Full Text] [Related]
8. Charge transport in C Leitherer S; Coto PB; Ullmann K; Weber HB; Thoss M Nanoscale; 2017 Jun; 9(21):7217-7226. PubMed ID: 28513712 [TBL] [Abstract][Full Text] [Related]
9. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor. Lau CS; Sadeghi H; Rogers G; Sangtarash S; Dallas P; Porfyrakis K; Warner J; Lambert CJ; Briggs GA; Mol JA Nano Lett; 2016 Jan; 16(1):170-6. PubMed ID: 26633125 [TBL] [Abstract][Full Text] [Related]
10. Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions. Li S; Yu H; Li J; Angello N; Jira ER; Li B; Burke MD; Moore JS; Schroeder CM Nano Lett; 2021 Oct; 21(19):8340-8347. PubMed ID: 34529446 [TBL] [Abstract][Full Text] [Related]
11. High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions. Gelbwaser-Klimovsky D; Aspuru-Guzik A; Thoss M; Peskin U Nano Lett; 2018 Aug; 18(8):4727-4733. PubMed ID: 29923410 [TBL] [Abstract][Full Text] [Related]
12. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions. II. A self-consistent Born approach. Sowa JK; Lambert N; Seideman T; Gauger EM J Chem Phys; 2020 Feb; 152(6):064103. PubMed ID: 32061212 [TBL] [Abstract][Full Text] [Related]
14. Electron-Phonon Coupling in Current-Driven Single-Molecule Junctions. Bi H; Palma CA; Gong Y; Stallhofer K; Nuber M; Jing C; Meggendorfer F; Wen S; Yam C; Kienberger R; Elbing M; Mayor M; Iglev H; Barth JV; Reichert J J Am Chem Soc; 2020 Feb; 142(7):3384-3391. PubMed ID: 32070107 [TBL] [Abstract][Full Text] [Related]
15. Unraveling current-induced dissociation mechanisms in single-molecule junctions. Ke Y; Erpenbeck A; Peskin U; Thoss M J Chem Phys; 2021 Jun; 154(23):234702. PubMed ID: 34241274 [TBL] [Abstract][Full Text] [Related]
16. On the Role of Local Many-Body Interactions on the Thermoelectric Properties of Fullerene Junctions. Perroni CA; Cataudella V Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267468 [TBL] [Abstract][Full Text] [Related]
17. Vibration-Assisted Charge Transport through Positively Charged Dimer Junctions. Zhu X; Wang B; Xiong W; Zhou S; Qu K; Lü JT; Chen H; Jia C; Guo X Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202210939. PubMed ID: 36098651 [TBL] [Abstract][Full Text] [Related]
18. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Liu J; Huang X; Wang F; Hong W Acc Chem Res; 2019 Jan; 52(1):151-160. PubMed ID: 30500161 [TBL] [Abstract][Full Text] [Related]
19. Charge transport in nanoscale junctions. Albrecht T; Kornyshev A; Bjørnholm T J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407 [TBL] [Abstract][Full Text] [Related]
20. Towards molecular electronics with large-area molecular junctions. Akkerman HB; Blom PW; de Leeuw DM; de Boer B Nature; 2006 May; 441(7089):69-72. PubMed ID: 16672966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]