These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31605246)

  • 1. An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid.
    Baxi NN; Patel S; Hansoti D
    AMB Express; 2019 Oct; 9(1):161. PubMed ID: 31605246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a novel ε-caprolactam-degrading microbe, Acinetobacter calcoaceticus, from industrial wastewater by chemostat-enrichment.
    Rajoo S; Ahn JO; Lee HW; Jung JK
    Biotechnol Lett; 2013 Dec; 35(12):2069-72. PubMed ID: 23974491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bacteria that degrade low-molecular linear epsilon-caprolactam olygomers].
    Esikova TZ; Akatova EV; Taran SA
    Prikl Biokhim Mikrobiol; 2014; 50(5):481-9. PubMed ID: 25707105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ε-Caprolactam Utilization by Proteus sp. and Bordetella sp. Isolated From Solid Waste Dumpsites in Lagos State, Nigeria, First Report.
    Sanuth HA; Yadav A; Fagade OE; Shouche Y
    Indian J Microbiol; 2013 Jun; 53(2):221-6. PubMed ID: 24426112
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Esikova TZ; Akatova EV; Solyanikova IP
    Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838338
    [No Abstract]   [Full Text] [Related]  

  • 6. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics.
    Otzen M; Palacio C; Janssen DB
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6699-6711. PubMed ID: 29850960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of gamma-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: Identification of metabolites.
    Datta J; Maiti AK; Modak DP; Chakrabartty PK; Bhattacharyya P; Ray PK
    J Gen Appl Microbiol; 2000 Apr; 46(2):59-67. PubMed ID: 12483592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denitrification with epsilon-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system.
    Lee CM; Wang CC
    Water Sci Technol; 2004; 49(5-6):341-8. PubMed ID: 15137443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Plasmids controlling biodegradation of epsilon-caprolactam].
    Esikova TZ; Grishchenkov VG; Boronin AM
    Mikrobiologiia; 1990; 59(4):547-52. PubMed ID: 2263224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of epsilon-caprolactam from nylon-6 waste water by use of Pseudomonas aeruginosa MCM B-407.
    Kulkarni RS; Kanekar PP
    Curr Microbiol; 1998 Sep; 37(3):191-4. PubMed ID: 9688819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a New
    Esikova TZ; Anokhina TO; Suzina NE; Shushkova TV; Wu Y; Solyanikova IP
    Microorganisms; 2023 Mar; 11(3):. PubMed ID: 36985223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19.
    Wang Y; Wang C; Li A; Gao J
    Lett Appl Microbiol; 2015 Oct; 61(4):403-10. PubMed ID: 26250405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus.
    Brack C; Mikolasch A; Schlueter R; Otto A; Becher D; Wegner U; Albrecht D; Riedel K; Schauer F
    Mar Biotechnol (NY); 2015 Jun; 17(3):290-304. PubMed ID: 25678259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [COMPARATIVE STUDY ON THE EFFECT OF EPSILON-AMINOCAPROIC ACID, ACETYL-EPSILON-AMINOCAPROIC ACID AND CAPROLACTAM FOR VARIOUS PARAMETERS OF THE FIBRINOLYTIC SYSTEM].
    AUERSWALD W; DOLESCHEL W
    Wien Med Wochenschr; 1965 Feb; 115():102-5. PubMed ID: 14260441
    [No Abstract]   [Full Text] [Related]  

  • 16. Nanohybrids of nylon 6 with multi-walled carbon nanotubes: solvent-free polymerization of epsilon-caprolactam under variable experimental conditions.
    Basiuk EV; Solis-González OA; Alvarez-Zauco E; Puente-Lee I; Basiuk VA
    J Nanosci Nanotechnol; 2009 May; 9(5):3313-9. PubMed ID: 19453009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of spore-forming bacteria of the genus Bacillus that break down caprolactam].
    Rotmistrov MN; Roĭ AA; Gvozdiak PI
    Mikrobiologiia; 1975; 44(4):727-31. PubMed ID: 809644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experience with toxicity of cyclohexanonoxyme, epsilon-caprolactam, and epsilon-aminocaproic acid; biological equalization of all substance].
    POKORNY F
    Sb Lek; 1952; 54(1-2):28-47. PubMed ID: 14950078
    [No Abstract]   [Full Text] [Related]  

  • 19. Mineralization of melamine and cyanuric acid as sole nitrogen source by newly isolated Arthrobacter spp. using a soil-charcoal perfusion method.
    Hatakeyama T; Takagi K; Yamazaki K; Sakakibara F; Ito K; Takasu E; Naokawa T; Fujii K
    World J Microbiol Biotechnol; 2015 May; 31(5):785-93. PubMed ID: 25752233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characteristics of plasmid pBS271 controlling epsilon-caprolactam degradation by bacteria in the genus Pseudomonas].
    Boronin AM; Grishchenkov VG; Kulakov LA; Naumova RP
    Mikrobiologiia; 1986; 55(2):231-6. PubMed ID: 3724565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.