BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31605622)

  • 1. Correlative climatic niche models predict real and virtual species distributions equally well.
    Journé V; Barnagaud JY; Bernard C; Crochet PA; Morin X
    Ecology; 2020 Jan; 101(1):e02912. PubMed ID: 31605622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.
    Rapacciuolo G; Roy DB; Gillings S; Fox R; Walker K; Purvis A
    PLoS One; 2012; 7(7):e40212. PubMed ID: 22792243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change.
    Lu WX; Wang ZZ; Hu XY; Rao GY
    Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions.
    Heino J; Virkkala R; Toivonen H
    Biol Rev Camb Philos Soc; 2009 Feb; 84(1):39-54. PubMed ID: 19032595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.
    Boucher-Lalonde V; Currie DJ
    PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.
    Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA
    PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America.
    Case MJ; Lawler JJ
    Glob Chang Biol; 2017 May; 23(5):2005-2015. PubMed ID: 27859937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illuminating geographical patterns in species' range shifts.
    Grenouillet G; Comte L
    Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically informed ecological niche models improve climate change predictions.
    Ikeda DH; Max TL; Allan GJ; Lau MK; Shuster SM; Whitham TG
    Glob Chang Biol; 2017 Jan; 23(1):164-176. PubMed ID: 27543682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.
    Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P
    Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics.
    Oldfather MF; Kling MM; Sheth SN; Emery NC; Ackerly DD
    Glob Chang Biol; 2020 Mar; 26(3):1055-1067. PubMed ID: 31674701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community science validates climate suitability projections from ecological niche modeling.
    Saunders SP; Michel NL; Bateman BL; Wilsey CB; Dale K; LeBaron GS; Langham GM
    Ecol Appl; 2020 Sep; 30(6):e02128. PubMed ID: 32223029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the model: expert knowledge improves predictions of species' fates under climate change.
    Reside AE; Critchell K; Crayn DM; Goosem M; Goosem S; Hoskin CJ; Sydes T; Vanderduys EP; Pressey RL
    Ecol Appl; 2019 Jan; 29(1):e01824. PubMed ID: 30390399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pace of past climate change vs. potential bird distributions and land use in the United States.
    Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ
    Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional traits help to explain half-century long shifts in pollinator distributions.
    Aguirre-Gutiérrez J; Kissling WD; Carvalheiro LG; WallisDeVries MF; Franzén M; Biesmeijer JC
    Sci Rep; 2016 Apr; 6():24451. PubMed ID: 27079784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting individual-based models of spatial population dynamics to long-term monitoring data.
    Malchow AK; Fandos G; Kormann UG; Grüebler MU; Kéry M; Hartig F; Zurell D
    Ecol Appl; 2024 Jun; 34(4):e2966. PubMed ID: 38629509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling plant species distributions under future climates: how fine scale do climate projections need to be?
    Franklin J; Davis FW; Ikegami M; Syphard AD; Flint LE; Flint AL; Hannah L
    Glob Chang Biol; 2013 Feb; 19(2):473-83. PubMed ID: 23504785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.