These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 31605743)

  • 1. Pre-training inactivation of basolateral amygdala and mediodorsal thalamus, but not orbitofrontal cortex or prelimbic cortex, impairs devaluation in a multiple-response/multiple-reinforcer cued operant task.
    Fisher H; Pajser A; Pickens CL
    Behav Brain Res; 2020 Jan; 378():112159. PubMed ID: 31605743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.
    Lichtenberg NT; Pennington ZT; Holley SM; Greenfield VY; Cepeda C; Levine MS; Wassum KM
    J Neurosci; 2017 Aug; 37(35):8374-8384. PubMed ID: 28743727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient inactivation of basolateral amygdala during selective satiation disrupts reinforcer devaluation in rats.
    West EA; Forcelli PA; Murnen AT; McCue DL; Gale K; Malkova L
    Behav Neurosci; 2012 Aug; 126(4):563-74. PubMed ID: 22845705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional disconnection of the orbitofrontal cortex and basolateral amygdala impairs acquisition of a rat gambling task and disrupts animals' ability to alter decision-making behavior after reinforcer devaluation.
    Zeeb FD; Winstanley CA
    J Neurosci; 2013 Apr; 33(15):6434-43. PubMed ID: 23575841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
    Pickens CL; Saddoris MP; Setlow B; Gallagher M; Holland PC; Schoenbaum G
    J Neurosci; 2003 Dec; 23(35):11078-84. PubMed ID: 14657165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects.
    Johnson AW; Gallagher M; Holland PC
    J Neurosci; 2009 Jan; 29(3):696-704. PubMed ID: 19158296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A limited role for mediodorsal thalamus in devaluation tasks.
    Pickens CL
    Behav Neurosci; 2008 Jun; 122(3):659-76. PubMed ID: 18513136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.
    West EA; DesJardin JT; Gale K; Malkova L
    J Neurosci; 2011 Oct; 31(42):15128-35. PubMed ID: 22016546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats.
    West EA; Forcelli PA; McCue DL; Malkova L
    Behav Brain Res; 2013 Jun; 246():10-4. PubMed ID: 23458741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior.
    Alcaraz F; Naneix F; Desfosses E; Marchand AR; Wolff M; Coutureau E
    Brain Struct Funct; 2016 Jan; 221(1):79-89. PubMed ID: 25260555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions.
    Shipman ML; Trask S; Bouton ME; Green JT
    Neurobiol Learn Mem; 2018 Nov; 155():164-172. PubMed ID: 30053577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.
    Orsini CA; Trotta RT; Bizon JL; Setlow B
    J Neurosci; 2015 Jan; 35(4):1368-79. PubMed ID: 25632115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Medial Orbitofrontal Cortex-Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice.
    Lichtenberg NT; Sepe-Forrest L; Pennington ZT; Lamparelli AC; Greenfield VY; Wassum KM
    J Neurosci; 2021 Aug; 41(34):7267-7277. PubMed ID: 34272313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.
    Izquierdo A; Murray EA
    J Neurosci; 2010 Jan; 30(2):661-9. PubMed ID: 20071531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning.
    Keefer SE; Petrovich GD
    Behav Neurosci; 2020 Feb; 134(1):34-44. PubMed ID: 31829643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A visual, position-independent instrumental reinforcer devaluation task for rats.
    West EA; Forcelli PA; Murnen A; Gale K; Malkova L
    J Neurosci Methods; 2011 Jan; 194(2):297-304. PubMed ID: 21093482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced sensitivity to devaluation for instrumental but not consummatory behaviors in binge eating prone rats.
    LeMon JV; Sisk CL; Klump KL; Johnson AW
    Physiol Behav; 2019 Jul; 206():13-21. PubMed ID: 30858100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Prefrontal Cortex and Mediodorsal Thalamus in Task Engagement and Behavioral Flexibility.
    Marton TF; Seifikar H; Luongo FJ; Lee AT; Sohal VS
    J Neurosci; 2018 Mar; 38(10):2569-2578. PubMed ID: 29437889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of prelimbic cortex in instrumental conditioning.
    Corbit LH; Balleine BW
    Behav Brain Res; 2003 Nov; 146(1-2):145-57. PubMed ID: 14643467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation.
    West EA; Carelli RM
    J Neurosci; 2016 Jan; 36(4):1128-39. PubMed ID: 26818502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.