BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31605746)

  • 21. A Super-SILAC Strategy for the Accurate and Multiplexed Profiling of Histone Posttranslational Modifications.
    Noberini R; Bonaldi T
    Methods Enzymol; 2017; 586():311-332. PubMed ID: 28137569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications.
    Hao B; Chen K; Zhai L; Liu M; Liu B; Tan M
    Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38862432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating pathological epigenetic aberrations by epi-proteomics.
    Robusti G; Vai A; Bonaldi T; Noberini R
    Clin Epigenetics; 2022 Nov; 14(1):145. PubMed ID: 36371348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution is not a strict requirement for characterization and quantification of histone post-translational modifications.
    Karch KR; Zee BM; Garcia BA
    J Proteome Res; 2014 Dec; 13(12):6152-9. PubMed ID: 25325711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced top-down characterization of histone post-translational modifications.
    Tian Z; Tolić N; Zhao R; Moore RJ; Hengel SM; Robinson EW; Stenoien DL; Wu S; Smith RD; Paša-Tolić L
    Genome Biol; 2012 Oct; 13(10):R86. PubMed ID: 23034525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput profiling of histone post-translational modifications and chromatin modifying proteins by reverse phase protein array.
    Wang X; Shi Z; Lu HY; Kim JJ; Bu W; Villalobos JA; Perera DN; Jung SY; Wang T; Grimm SL; Taylor BC; Rajapakshe K; Park H; Wulfkuhle J; Young NL; Li Y; Coarfa C; Edwards DP; Huang S
    J Proteomics; 2022 Jun; 262():104596. PubMed ID: 35489683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry.
    Ostasiewicz P; Zielinska DF; Mann M; Wiśniewski JR
    J Proteome Res; 2010 Jul; 9(7):3688-700. PubMed ID: 20469934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics.
    Kulej K; Avgousti DC; Weitzman MD; Garcia BA
    Methods; 2015 Nov; 90():8-20. PubMed ID: 26093074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone Acid Extraction and High Throughput Mass Spectrometry to Profile Histone Modifications in Arabidopsis thaliana.
    Scheid R; Dowell JA; Sanders D; Jiang J; Denu JM; Zhong X
    Curr Protoc; 2022 Aug; 2(8):e527. PubMed ID: 36001747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications.
    Simithy J; Sidoli S; Garcia BA
    Proteomics; 2018 Sep; 18(18):e1700309. PubMed ID: 29512899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry-Based Approaches.
    Lu C; Coradin M; Porter EG; Garcia BA
    Mol Cell Proteomics; 2021; 20():100006. PubMed ID: 33203747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global profiling of histone modifications in the polyomavirus BK virion minichromosome.
    Fang CY; Shen CH; Wang M; Chen PL; Chan MW; Hsu PH; Chang D
    Virology; 2015 Sep; 483():1-12. PubMed ID: 25958155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis.
    Holt MV; Wang T; Young NL
    Curr Protoc; 2021 Feb; 1(2):e26. PubMed ID: 33534192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of post-translational modifications of histone H3 variants during the cell cycle.
    Chen J; Hu Y; Yu Y; Zhang L; Yang P; Jin H
    Anal Chim Acta; 2019 Nov; 1080():116-126. PubMed ID: 31409460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry.
    Zhang C; Liu Y
    Methods Enzymol; 2017; 586():165-191. PubMed ID: 28137562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted detection and quantitation of histone modifications from 1,000 cells.
    Abshiru NA; Sikora JW; Camarillo JM; Morris JA; Compton PD; Lee T; Neelamraju Y; Haddox S; Sheridan C; Carroll M; Cripe LD; Tallman MS; Paietta EM; Melnick AM; Thomas PM; Garrett-Bakelman FE; Kelleher NL
    PLoS One; 2020; 15(10):e0240829. PubMed ID: 33104722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of Histone Modifications in Plants by Tandem Mass Spectrometry.
    Mahrez W; Hennig L
    Methods Mol Biol; 2018; 1675():131-145. PubMed ID: 29052190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging.
    Zane L; Chapus F; Pegoraro G; Misteli T
    Mol Biol Cell; 2017 Aug; 28(17):2290-2302. PubMed ID: 28615324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of Unknown Posttranslational Modifications by Top-Down Mass Spectrometry.
    Wilson JW; Zhou M
    Methods Mol Biol; 2022; 2500():181-199. PubMed ID: 35657594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.