BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31605801)

  • 1. A New Next-Generation Sequencing Strategy for the Simultaneous Analysis of Mutations and Chromosomal Rearrangements at DNA Level in Acute Myeloid Leukemia Patients.
    Prieto-Conde MI; Corchete LA; García-Álvarez M; Jiménez C; Medina A; Balanzategui A; Hernández-Ruano M; Maldonado R; Sarasquete ME; Alcoceba M; Puig N; González-Calle V; García-Sanz R; Gutiérrez NC; González-Díaz M; Chillón MC
    J Mol Diagn; 2020 Jan; 22(1):60-71. PubMed ID: 31605801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Malfeasance Mediating Myeloid Malignancies: The Genetics of Acute Myeloid Leukemia.
    King RL; Bagg A
    Methods Mol Biol; 2017; 1633():1-17. PubMed ID: 28735477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of FISH, RT-PCR, and cytogenetics for the diagnosis of bcr-abl-positive leukemias.
    Cox MC; Maffei L; Buffolino S; Del Poeta G; Venditti A; Cantonetti M; Aronica G; Aquilina P; Masi M; Amadori S
    Am J Clin Pathol; 1998 Jan; 109(1):24-31. PubMed ID: 9426514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of BCR/ABL gene rearrangements by interphase fluorescence in situ hybridization (FISH) in BCR/ABL+ leukemias: incidence and underlying genetic abnormalities.
    Primo D; Tabernero MD; Rasillo A; Sayagués JM; Espinosa AB; Chillón MC; Garcia-Sanz R; Gutierrez N; Giralt M; Hagemeijer A; San Miguel JF; Orfao A
    Leukemia; 2003 Jun; 17(6):1124-9. PubMed ID: 12764379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence in situ hybridization: a highly efficient technique of molecular diagnosis and predication for disease course in patients with myeloid leukemias.
    Amare PS; Baisane C; Saikia T; Nair R; Gawade H; Advani S
    Cancer Genet Cytogenet; 2001 Dec; 131(2):125-34. PubMed ID: 11750052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma.
    Jiménez C; Jara-Acevedo M; Corchete LA; Castillo D; Ordóñez GR; Sarasquete ME; Puig N; Martínez-López J; Prieto-Conde MI; García-Álvarez M; Chillón MC; Balanzategui A; Alcoceba M; Oriol A; Rosiñol L; Palomera L; Teruel AI; Lahuerta JJ; Bladé J; Mateos MV; Orfão A; San Miguel JF; González M; Gutiérrez NC; García-Sanz R
    J Mol Diagn; 2017 Jan; 19(1):99-106. PubMed ID: 27863261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Abnormalities of chromosome 17 in myeloid malignancies with complex chromosomal abnormalities].
    Zhu Y; Xu W; Liu Q; Pan J; Qiu H; Wang R; Qiao C; Jiang Y; Zhang S; Fan L; Zhang J; Shen Y; Xue Y; Li J
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Oct; 25(5):579-82. PubMed ID: 18841577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing and molecular cytogenetic characterization of ETV6-LYN fusion due to chromosomes 1, 8 and 12 rearrangement in acute myeloid leukemia.
    Ma ESK; Wan TSK; Au CH; Ho DN; Ma SY; Ng MHL; Chan TL
    Cancer Genet; 2017 Dec; 218-219():15-19. PubMed ID: 29153093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of mate-pair sequencing to characterize a complex cryptic BCR/ABL1 rearrangement observed in a newly diagnosed case of chronic myeloid leukemia.
    Peterson JF; Pitel BA; Smoley SA; Smadbeck JB; Johnson SH; Vasmatzis G; Kearney HM; Greipp PT; Hoppman NL; Baughn LB; Ketterling RP
    Hum Pathol; 2019 Jul; 89():109-114. PubMed ID: 30267776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing.
    Mack EKM; Marquardt A; Langer D; Ross P; Ultsch A; Kiehl MG; Mack HID; Haferlach T; Neubauer A; Brendel C
    Haematologica; 2019 Feb; 104(2):277-287. PubMed ID: 30190345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia.
    Aypar U; Smoley SA; Pitel BA; Pearce KE; Zenka RM; Vasmatzis G; Johnson SH; Smadbeck JB; Peterson JF; Geiersbach KB; Van Dyke DL; Thorland EC; Jenkins RB; Ketterling RP; Greipp PT; Kearney HM; Hoppman NL; Baughn LB
    Eur J Haematol; 2019 Jan; 102(1):87-96. PubMed ID: 30270457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing false-positive fluorescence in situ hybridization results by mate-pair sequencing in a patient with chronic myeloid leukemia and progression to myeloid blast crisis.
    Lopes JL; Webley M; Pitel BA; Pearce KE; Smadbeck JB; Johnson SH; Vasmatzis G; Sukov WR; Greipp PT; Hoppman NL; Ketterling RP; Baughn LB; Finn L; Peterson JF
    Cancer Genet; 2020 May; 243():48-51. PubMed ID: 32272434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Utility of Targeted Next-Generation Sequencing Assay to Detect Copy Number Variants Associated with Myelodysplastic Syndrome in Myeloid Malignancies.
    Jiang L; Pallavajjala A; Huang J; Haley L; Morsberger L; Stinnett V; Hardy M; Park R; Ament C; Finch A; Shane A; Parish R; Nozari A; Long P; Adams E; Smith K; Parimi V; Dougaparsad S; Long L; Gocke CD; Zou YS
    J Mol Diagn; 2021 Apr; 23(4):467-483. PubMed ID: 33577993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of CALR Mutation in Clonal and Nonclonal Hematologic Diseases Using Fragment Analysis and Next-Generation Sequencing.
    Gardner JA; Peterson JD; Turner SA; Soares BL; Lancor CR; Dos Santos LL; Kaur P; Ornstein DL; Tsongalis GJ; de Abreu FB
    Am J Clin Pathol; 2016 Oct; 146(4):448-55. PubMed ID: 27686171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing.
    Malmberg EB; Ståhlman S; Rehammar A; Samuelsson T; Alm SJ; Kristiansson E; Abrahamsson J; Garelius H; Pettersson L; Ehinger M; Palmqvist L; Fogelstrand L
    Eur J Haematol; 2017 Jan; 98(1):26-37. PubMed ID: 27197529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring.
    Luthra R; Patel KP; Reddy NG; Haghshenas V; Routbort MJ; Harmon MA; Barkoh BA; Kanagal-Shamanna R; Ravandi F; Cortes JE; Kantarjian HM; Medeiros LJ; Singh RR
    Haematologica; 2014 Mar; 99(3):465-73. PubMed ID: 24142997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and reliably sensitive diagnosis and monitoring of Philadelphia chromosome-positive cells in chronic myeloid leukemia by interphase fluorescence in situ hybridization of peripheral blood cells.
    Yanagi M; Shinjo K; Takeshita A; Tobita T; Yano K; Kobayashi M; Terasaki H; Naoe T; Ohnishi K; Ohno R
    Leukemia; 1999 Apr; 13(4):542-52. PubMed ID: 10214860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of rare reciprocal RUNX1 rearrangements by next-generation sequencing in acute myeloid leukemia.
    Flach J; Shumilov E; Joncourt R; Porret N; Tchinda J; Legros M; Scarpelli I; Hewer E; Novak U; Schoumans J; Bacher U; Pabst T
    Genes Chromosomes Cancer; 2020 Apr; 59(4):268-274. PubMed ID: 31756777
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kumar D; Mehta A; Panigrahi MK; Nath S; Saikia KK
    Turk J Haematol; 2018 Mar; 35(1):49-53. PubMed ID: 29129825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of FISH to complex chromosomal rearrangements associated with chronic myelogenous leukemia.
    Sullivan BA; Schiffer CA; Patil SR; Hulseberg D; Leana-Cox J; Schwartz S
    Cancer Genet Cytogenet; 1995 Jul; 82(2):93-9. PubMed ID: 7664251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.