BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31605925)

  • 1. Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming.
    Casson Moreno V; Iervolino G; Tugnoli A; Cozzani V
    Waste Manag; 2020 Jan; 101():106-115. PubMed ID: 31605925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.
    Neumann J; Meyer J; Ouadi M; Apfelbacher A; Binder S; Hornung A
    Waste Manag; 2016 Jan; 47(Pt A):141-8. PubMed ID: 26190827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food and Market Waste-A Pathway to Sustainable Fuels and Waste Valorization.
    Ouadi M; Bashir MA; Speranza LG; Jahangiri H; Hornung A
    Energy Fuels; 2019 Oct; 33(10):9843-9850. PubMed ID: 32952287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concise review on waste biomass valorization through thermochemical conversion.
    Joshi NC; Sinha S; Bhatnagar P; Nath Y; Negi B; Kumar V; Gururani P
    Curr Res Microb Sci; 2024; 6():100237. PubMed ID: 38706494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and valorization of biomass char: a comparison with biomass ash.
    Trivedi NS; Mandavgane SA; Chaurasia A
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3458-3467. PubMed ID: 29152698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and thermal investigation of lignocellulosic biomass conversion for enhancing sustainable imperative in progressive organic refinery paradigm for waste-to-energy applications.
    Qureshi T; Farooq M; Imran S; Munir MA; Javed MA; Sohoo I; Sultan M; Rehman AU; Farhan M; Asim M; Andresen JM
    Environ Res; 2024 Apr; 246():118129. PubMed ID: 38211718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review.
    Babu S; Singh Rathore S; Singh R; Kumar S; Singh VK; Yadav SK; Yadav V; Raj R; Yadav D; Shekhawat K; Ali Wani O
    Bioresour Technol; 2022 Sep; 360():127566. PubMed ID: 35788385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of energy potential of wood industry wastes through thermochemical conversions.
    Vega LY; López L; Valdés CF; Chejne F
    Waste Manag; 2019 Mar; 87():108-118. PubMed ID: 31109509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry.
    Aliaño-González MJ; Gabaston J; Ortiz-Somovilla V; Cantos-Villar E
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.
    Biagini E; Barontini F; Tognotti L
    Bioresour Technol; 2015 Oct; 194():36-42. PubMed ID: 26183923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated management of ash from industrial and domestic combustion: a new sustainable approach for reducing greenhouse gas emissions from energy conversion.
    Benassi L; Dalipi R; Consigli V; Pasquali M; Borgese L; Depero LE; Clegg F; Bingham PA; Bontempi E
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14834-14846. PubMed ID: 28477251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
    Gerber Van Doren L; Posmanik R; Bicalho FA; Tester JW; Sills DL
    Bioresour Technol; 2017 Feb; 225():67-74. PubMed ID: 27883955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives.
    Song C; Zhang C; Zhang S; Lin H; Kim Y; Ramakrishnan M; Du Y; Zhang Y; Zheng H; Barceló D
    Sci Total Environ; 2020 Dec; 749():141972. PubMed ID: 33370925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-Catalytic Reforming of municipal solid waste.
    Ouadi M; Jaeger N; Greenhalf C; Santos J; Conti R; Hornung A
    Waste Manag; 2017 Oct; 68():198-206. PubMed ID: 28669494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management.
    Duque-Acevedo M; Belmonte-Ureña LJ; Yakovleva N; Camacho-Ferre F
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33419338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable and circular agro-environmental practices: A review of the management of agricultural waste biomass in Spain and the Czech Republic.
    Duque-Acevedo M; Ulloa-Murillo LM; Belmonte-Ureña LJ; Camacho-Ferre F; Mercl F; Tlustoš P
    Waste Manag Res; 2023 May; 41(5):955-969. PubMed ID: 36519229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economic assessment of turning gasification-based waste char into energy: A case study in South-Tyrol.
    Piazzi S; Zhang X; Patuzzi F; Baratieri M
    Waste Manag; 2020 Mar; 105():550-559. PubMed ID: 32146416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a more sustainable world through catalysis and green chemistry.
    Sheldon RA
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27009181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significance of biomass in a circular economy.
    Sherwood J
    Bioresour Technol; 2020 Mar; 300():122755. PubMed ID: 31956060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.