BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31605926)

  • 1. Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted Trees outperform other models.
    Ebrahimi M; Mohammadi-Dehcheshmeh M; Ebrahimie E; Petrovski KR
    Comput Biol Med; 2019 Nov; 114():103456. PubMed ID: 31605926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: highlighting the predictive power of lactose and electrical conductivity.
    Ebrahimie E; Ebrahimi F; Ebrahimi M; Tomlinson S; Petrovski KR
    J Dairy Res; 2018 May; 85(2):193-200. PubMed ID: 29785910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a new clinical mastitis detection method for automatic milking systems.
    Khatun M; Thomson PC; Kerrisk KL; Lyons NA; Clark CEF; Molfino J; García SC
    J Dairy Sci; 2018 Oct; 101(10):9385-9395. PubMed ID: 30055925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance comparison of machine learning models used for predicting subclinical mastitis in dairy cows: Bagging, boosting, stacking, and super-learner ensembles versus single machine learning models.
    Satoła A; Satoła K
    J Dairy Sci; 2024 Jun; 107(6):3959-3972. PubMed ID: 38310958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk prediction model of clinical mastitis in lactating dairy cows based on machine learning algorithms.
    Luo W; Dong Q; Feng Y
    Prev Vet Med; 2023 Dec; 221():106059. PubMed ID: 37951013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection.
    Khatun M; Bruckmaier RM; Thomson PC; House J; García SC
    J Dairy Sci; 2019 Oct; 102(10):9200-9212. PubMed ID: 31351709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.
    Kamphuis C; Mollenhorst H; Heesterbeek JA; Hogeveen H
    J Dairy Sci; 2010 Aug; 93(8):3616-27. PubMed ID: 20655431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of oxygen concentration for detection of subclinical mastitis.
    Wittek T; Mader C; Ribitsch V; Burgstaller J
    Schweiz Arch Tierheilkd; 2019 Oct; 161(10):659-665. PubMed ID: 31586928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis.
    Jensen DB; Hogeveen H; De Vries A
    J Dairy Sci; 2016 Sep; 99(9):7344-7361. PubMed ID: 27320667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short communication: Protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows.
    Koop G; van Werven T; Roffel S; Hogeveen H; Nazmi K; Bikker FJ
    J Dairy Sci; 2015 Jul; 98(7):4613-8. PubMed ID: 25981067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariable time series classification for clinical mastitis detection and prediction in automated milking systems.
    Fan X; Watters RD; Nydam DV; Virkler PD; Wieland M; Reed KF
    J Dairy Sci; 2023 May; 106(5):3448-3464. PubMed ID: 36935240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Farm-level risk factors for bovine mastitis in Dutch automatic milking dairy herds.
    Deng Z; Koop G; Lam TJGM; van der Lans IA; Vernooij JCM; Hogeveen H
    J Dairy Sci; 2019 May; 102(5):4522-4535. PubMed ID: 30852004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the support vector machine to predict subclinical mastitis in dairy cattle.
    Mammadova N; Keskin I
    ScientificWorldJournal; 2013; 2013():603897. PubMed ID: 24574862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Sensor Data to Detect Lameness and Mastitis Treatment Events in Dairy Cows: A Comparison of Classification Models.
    Post C; Rietz C; Büscher W; Müller U
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic Screening of Bovine Mastitis Using MALDI-TOF MS Direct-Spotting of Milk and Machine Learning.
    Thompson J; Everhart Nunn SL; Sarkar S; Clayton B
    Vet Sci; 2023 Jan; 10(2):. PubMed ID: 36851405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indicators of inflammation in the diagnosis of mastitis.
    Pyörälä S
    Vet Res; 2003; 34(5):565-78. PubMed ID: 14556695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of subclinical mastitis from on-line milking parlor data.
    Nielen M; Schukken YH; Brand A; Deluyker HA; Maatje K
    J Dairy Sci; 1995 May; 78(5):1039-49. PubMed ID: 7622715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Prediction of Clinical Mastitis in Dairy Cows Based on Milk Yield, Rumination Time, and Milk Electrical Conductivity Using Machine Learning Algorithms.
    Tian H; Zhou X; Wang H; Xu C; Zhao Z; Xu W; Deng Z
    Animals (Basel); 2024 Jan; 14(3):. PubMed ID: 38338070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quarter-milking-, quarter-, udder- and lactation-level risk factors and indicators for clinical mastitis during lactation in pasture-fed dairy cows managed in an automatic milking system.
    Hammer JF; Morton JM; Kerrisk KL
    Aust Vet J; 2012 May; 90(5):167-74. PubMed ID: 22510075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The determination of mastitis severity at 4-level using Milk physical properties: A deep learning approach via MLP and evaluation at different SCC thresholds.
    Yesil MI; Goncu S
    Res Vet Sci; 2024 Jul; 174():105310. PubMed ID: 38795430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.