These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31605926)

  • 21. Comparison of methods for predicting cow composite somatic cell counts.
    Anglart D; Hallén-Sandgren C; Emanuelson U; Rönnegård L
    J Dairy Sci; 2020 Sep; 103(9):8433-8442. PubMed ID: 32564958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows.
    Bobbo T; Biffani S; Taccioli C; Penasa M; Cassandro M
    Sci Rep; 2021 Jul; 11(1):13642. PubMed ID: 34211046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting machine learning methods with monthly routine milk recording data and climatic information to predict subclinical mastitis in Italian Mediterranean buffaloes.
    Bobbo T; Matera R; Pedota G; Manunza A; Cotticelli A; Neglia G; Biffani S
    J Dairy Sci; 2023 Mar; 106(3):1942-1952. PubMed ID: 36586801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Automated detection of estrus and mastitis in dairy cows].
    de Mol RM
    Tijdschr Diergeneeskd; 2001 Feb; 126(4):99-103. PubMed ID: 11233511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rule Discovery in Milk Content towards Mastitis Diagnosis: Dealing with Farm Heterogeneity over Multiple Years through Classification Based on Associations.
    Ebrahimie E; Mohammadi-Dehcheshmeh M; Laven R; Petrovski KR
    Animals (Basel); 2021 Jun; 11(6):. PubMed ID: 34205858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count.
    Kamphuis C; Sherlock R; Jago J; Mein G; Hogeveen H
    J Dairy Sci; 2008 Dec; 91(12):4560-70. PubMed ID: 19038931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Case study: Evaluating quarter and composite milk sampling for detection of subclinical intramammary infections in dairy cattle.
    Bach KD; Sipka A; McArt JAA
    Prev Vet Med; 2019 Feb; 163():51-57. PubMed ID: 30670186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-D-glucosaminidase for detecting dairy cows with intramammary infection.
    Nyman AK; Emanuelson U; Waller KP
    J Dairy Sci; 2016 Feb; 99(2):1440-1448. PubMed ID: 26627859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Udder health on dairy farms. 1. Results of a longitudinal study on 300 Dutch farms].
    Barkema HW
    Tijdschr Diergeneeskd; 1999 Jun; 124(11):338-44. PubMed ID: 10372420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of incomplete milking during the first 5 days in milk on udder and reproductive tract health: Results from a randomized controlled trial.
    Krug C; Morin PA; Lacasse P; Roy JP; Dubuc J; Dufour S
    J Dairy Sci; 2018 Oct; 101(10):9275-9286. PubMed ID: 30077449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of analysis techniques for on-line detection of clinical mastitis.
    Nielen M; Schukken YH; Brand A; Haring S; Ferwerda-van Zonneveld RT
    J Dairy Sci; 1995 May; 78(5):1050-61. PubMed ID: 7622716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A knowledge-based system for diagnosis of mastitis problems at the herd level. 2. Machine milking.
    Hogeveen H; van Vliet JH; Noordhuizen-Stassen EN; De Koning C; Tepp DM; Brand A
    J Dairy Sci; 1995 Jul; 78(7):1441-55. PubMed ID: 7593837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis.
    Soyeurt H; Bastin C; Colinet FG; Arnould VM; Berry DP; Wall E; Dehareng F; Nguyen HN; Dardenne P; Schefers J; Vandenplas J; Weigel K; Coffey M; Théron L; Detilleux J; Reding E; Gengler N; McParland S
    Animal; 2012 Nov; 6(11):1830-8. PubMed ID: 22717388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field validation of protocols developed to evaluate in-line mastitis detection systems.
    Kamphuis C; Dela Rue BT; Eastwood CR
    J Dairy Sci; 2016 Feb; 99(2):1619-1631. PubMed ID: 26686708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting intramammary infection status at drying off using indirect testing of milk samples.
    Gohary K; McDougall S
    N Z Vet J; 2018 Nov; 66(6):312-318. PubMed ID: 30092716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential role of MicroRNA as a diagnostic tool in the detection of bovine mastitis.
    Srikok S; Patchanee P; Boonyayatra S; Chuammitri P
    Prev Vet Med; 2020 Sep; 182():105101. PubMed ID: 32823253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Herd management and social variables associated with bulk tank somatic cell count in dairy herds in the eastern United States.
    Schewe RL; Kayitsinga J; Contreras GA; Odom C; Coats WA; Durst P; Hovingh EP; Martinez RO; Mobley R; Moore S; Erskine RJ
    J Dairy Sci; 2015 Nov; 98(11):7650-65. PubMed ID: 26298763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of treatment of mastitis by oxytocin or antibiotics following detection according to changes in milk electrical conductivity prior to visible signs.
    Hillerton JE; Semmens JE
    J Dairy Sci; 1999 Jan; 82(1):93-8. PubMed ID: 10022011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trends in diagnosis and control of bovine mastitis: a review.
    Deb R; Kumar A; Chakraborty S; Verma AK; Tiwari R; Dhama K; Singh U; Kumar S
    Pak J Biol Sci; 2013 Dec; 16(23):1653-61. PubMed ID: 24506032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.