These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31605938)
1. Fabricating a fluorescence resonance energy transfer system with AIE molecular for sensitive detection of Cu(II) ions. Guan P; Yang B; Liu B Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117604. PubMed ID: 31605938 [TBL] [Abstract][Full Text] [Related]
2. Achieving highly sensitive detection of Cu Yang J; Chai J; Yang B; Liu B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():272-279. PubMed ID: 30557844 [TBL] [Abstract][Full Text] [Related]
3. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift. Şen E; Meral K; Atılgan S Chemistry; 2016 Jan; 22(2):736-45. PubMed ID: 26617068 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion. Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography. Liu W; Wang Y; Han X; Lu P; Zhu L; Sun C; Qian J; He S Nanoscale; 2018 May; 10(21):10025-10032. PubMed ID: 29774924 [TBL] [Abstract][Full Text] [Related]
6. FRET processes of bi-fluorophoric sensor material containing tetraphenylethylene donor and optical-switchable merocyanine acceptor for lead ion (Pb Ho FC; Huang KH; Cheng HW; Huang YJ; Nhien PQ; Wu CH; Wu JI; Chen SY; Lin HC Dyes Pigm; 2021 May; 189():. PubMed ID: 33746312 [TBL] [Abstract][Full Text] [Related]
7. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly. Guo S; Song Y; He Y; Hu XY; Wang L Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817 [TBL] [Abstract][Full Text] [Related]
8. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
9. A Supramolecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect. Li JJ; Chen Y; Yu J; Cheng N; Liu Y Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585340 [TBL] [Abstract][Full Text] [Related]
10. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Xiao T; Wu H; Sun G; Diao K; Wei X; Li ZY; Sun XQ; Wang L Chem Commun (Camb); 2020 Oct; 56(80):12021-12024. PubMed ID: 32901631 [TBL] [Abstract][Full Text] [Related]
11. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Hao M; Sun G; Zuo M; Xu Z; Chen Y; Hu XY; Wang L Angew Chem Int Ed Engl; 2020 Jun; 59(25):10095-10100. PubMed ID: 31625651 [TBL] [Abstract][Full Text] [Related]
12. Controllable Aggregation-Induced Emission and Förster Resonance Energy Transfer Behaviors of Bistable [ Trung NT; Nhien PQ; Kim Cuc TT; Wu CH; Buu Hue BT; Wu JI; Li YK; Lin HC ACS Appl Mater Interfaces; 2023 Mar; 15(12):15353-15366. PubMed ID: 36926804 [TBL] [Abstract][Full Text] [Related]
13. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative. Han X; Chen Q; Lu H; Ma J; Gao H ACS Appl Mater Interfaces; 2015 Dec; 7(51):28494-501. PubMed ID: 26634294 [TBL] [Abstract][Full Text] [Related]
14. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
15. A water-soluble molecular probe with aggregation-induced emission for discriminative detection of Al Xu P; Bao Z; Yu C; Qiu Q; Wei M; Xi W; Qian Z; Feng H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117335. PubMed ID: 31288169 [TBL] [Abstract][Full Text] [Related]
16. A Förster Resonance Energy Transfer Switchable Fluorescent Probe With H Wang R; Gao W; Gao J; Xu G; Zhu T; Gu X; Zhao C Front Chem; 2019; 7():778. PubMed ID: 31824918 [TBL] [Abstract][Full Text] [Related]
17. Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow. Li C; Liu Q; Tao S Nat Commun; 2022 Oct; 13(1):6034. PubMed ID: 36229467 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
19. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes. Kashida H; Takatsu T; Sekiguchi K; Asanuma H Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689 [TBL] [Abstract][Full Text] [Related]
20. A boron difluoride dye showing the aggregation-induced emission feature and high sensitivity to intra- and extra-cellular pH changes. Wu D; Shao L; Li Y; Hu Q; Huang F; Yu G; Tang G Chem Commun (Camb); 2016 Jan; 52(3):541-4. PubMed ID: 26537000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]