These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31605938)
21. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Xu S; Xu S; Zhu Y; Xu W; Zhou P; Zhou C; Dong B; Song H Nanoscale; 2014 Nov; 6(21):12573-9. PubMed ID: 25184968 [TBL] [Abstract][Full Text] [Related]
22. Luminescent Solar Concentrators Based on Energy Transfer from an Aggregation-Induced Emitter Conjugated Polymer. Lyu G; Kendall J; Meazzini I; Preis E; Bayseç S; Scherf U; Clément S; Evans RC ACS Appl Polym Mater; 2019 Nov; 1(11):3039-3047. PubMed ID: 31737866 [TBL] [Abstract][Full Text] [Related]
23. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Kumar A; Saha R; Mukherjee PS Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765 [TBL] [Abstract][Full Text] [Related]
24. Efficient excitation-energy transfer in ion-based organic nanoparticles with versatile tunability of the fluorescence colours. Yao H; Ashiba K Chemphyschem; 2012 Aug; 13(11):2703-10. PubMed ID: 22674683 [TBL] [Abstract][Full Text] [Related]
25. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging. Xia Y; Xu C; Zhang X; Gao J; Wu Y; Li C; Wang Z Colloids Surf B Biointerfaces; 2020 Apr; 188():110789. PubMed ID: 31955018 [TBL] [Abstract][Full Text] [Related]
26. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye. Sadhu S; Patra A Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556 [TBL] [Abstract][Full Text] [Related]
27. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels. Osad'ko IS; Shchukina AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127 [TBL] [Abstract][Full Text] [Related]
28. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. Li Z; Zhou Y; Cui Y; Liang G Nanoscale; 2022 May; 14(20):7711-7719. PubMed ID: 35579044 [TBL] [Abstract][Full Text] [Related]
29. Highly Efficient Förster Resonance Energy Transfer Modulations of Dual-AIEgens between a Tetraphenylethylene Donor and a Merocyanine Acceptor in Photo-Switchable [2]Rotaxanes and Reversible Photo-Patterning Applications. Nhien PQ; Cuc TTK; Khang TM; Wu CH; Hue BTB; Wu JI; Mansel BW; Chen HL; Lin HC ACS Appl Mater Interfaces; 2020 Oct; 12(42):47921-47938. PubMed ID: 32936605 [TBL] [Abstract][Full Text] [Related]
30. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer. Lin L; Lin X; Guo H; Yang F Org Biomol Chem; 2017 Jul; 15(28):6006-6013. PubMed ID: 28678301 [TBL] [Abstract][Full Text] [Related]
31. AIE active turn-off fluorescent probe for the detection of Cu Pannipara M; Al-Sehemi AG; Kalam A; Asiri AM; Arshad MN Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():84-89. PubMed ID: 28437689 [TBL] [Abstract][Full Text] [Related]
32. AIE active multianalyte fluorescent probe for the detection of Cu Pannipara M; Al-Sehemi AG; Irfan A; Assiri M; Kalam A; Al-Ammari YS Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():54-60. PubMed ID: 29730554 [TBL] [Abstract][Full Text] [Related]
33. An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg Jiang Y; Duan Q; Zheng G; Yang L; Zhang J; Wang Y; Zhang H; He J; Sun H; Ho D Analyst; 2019 Feb; 144(4):1353-1360. PubMed ID: 30565594 [TBL] [Abstract][Full Text] [Related]
34. Aggregation-Induced Emission and Light-Harvesting Function of Tetraphenylethene-Based Tetracationic Dicyclophane. Li Y; Dong Y; Cheng L; Qin C; Nian H; Zhang H; Yu Y; Cao L J Am Chem Soc; 2019 May; 141(21):8412-8415. PubMed ID: 31026395 [TBL] [Abstract][Full Text] [Related]
35. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties. Ma X; Yue J; Wang Y; Gao Y; Qiao B; Feng E; Li Z; Ye F; Han X Soft Matter; 2021 Jun; 17(23):5666-5670. PubMed ID: 34095929 [TBL] [Abstract][Full Text] [Related]
36. Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. Guan Q; Li N; Shi L; Yu C; Gao X; Yang J; Guo Y; Li P; Zhu X ACS Biomater Sci Eng; 2019 Jul; 5(7):3618-3630. PubMed ID: 33405743 [TBL] [Abstract][Full Text] [Related]
37. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water. Ma C; Zeng F; Wu G; Wu S Anal Chim Acta; 2012 Jul; 734():69-78. PubMed ID: 22704474 [TBL] [Abstract][Full Text] [Related]
38. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
39. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Xing H; Wei T; Lin X; Dai Z Anal Chim Acta; 2018 Dec; 1042():71-78. PubMed ID: 30428990 [TBL] [Abstract][Full Text] [Related]
40. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril. Luo Y; Zhang W; Ren Q; Tao Z; Xiao X ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]