These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31606002)
1. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Zhang X; Su C; Liu X; Liu Z; Liang X; Zhang Y; Feng Y Chemosphere; 2020 Feb; 241():125027. PubMed ID: 31606002 [TBL] [Abstract][Full Text] [Related]
2. Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter. Liu X; Hu X; Zhang X; Chen X; Chen J; Yuan X Ecotoxicol Environ Saf; 2018 Jun; 154():69-74. PubMed ID: 29454988 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Chen X; Liu X; Zhang X; Cao L; Hu X J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500 [TBL] [Abstract][Full Text] [Related]
4. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Zheng K; Fan J; Hu X; Zhang X; Liu X; Shen J Int J Phytoremediation; 2019; 21(12):1190-1196. PubMed ID: 31119945 [TBL] [Abstract][Full Text] [Related]
5. Response characteristics of Scirpus trioueter and its rhizosphere to pyrene contaminated soils at different growth stages. Zhang XY; Liu XY; Liu SS; Liu FH; Chen LS; Xu G; Zhong CL; Su PC; Cao ZN Int J Phytoremediation; 2012 Aug; 14(7):691-702. PubMed ID: 22908637 [TBL] [Abstract][Full Text] [Related]
6. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. Zhang X; Liu X; Liu S; Liu F; Chen L; Xu G; Zhong C; Su P; Cao Z J Hazard Mater; 2011 Oct; 193():45-51. PubMed ID: 21899948 [TBL] [Abstract][Full Text] [Related]
7. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Hou Y; Liu X; Zhang X; Chen X; Tao K; Chen X; Liang X; He C Environ Sci Pollut Res Int; 2015 Nov; 22(22):17780-8. PubMed ID: 26154043 [TBL] [Abstract][Full Text] [Related]
8. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Hu X; Liu X; Zhang X; Cao L; Chen J; Yu H Chemosphere; 2017 Dec; 188():397-402. PubMed ID: 28898773 [TBL] [Abstract][Full Text] [Related]
9. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application. Chen T; Liu X; Zhang X; Hu X; Cao L Environ Sci Pollut Res Int; 2017 Aug; 24(23):19194-19200. PubMed ID: 28664493 [TBL] [Abstract][Full Text] [Related]
11. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). Liu X; Shen S; Zhang X; Chen X; Jin R; Li X Environ Sci Pollut Res Int; 2020 Nov; 27(33):41639-41646. PubMed ID: 32691318 [TBL] [Abstract][Full Text] [Related]
12. Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene. Wu K; Dumat C; Li H; Xia H; Li Z; Wu J Int J Phytoremediation; 2019; 21(7):683-692. PubMed ID: 30924369 [TBL] [Abstract][Full Text] [Related]
13. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
14. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel-contaminated wetland. Wei J; Liu X; Zhang X; Chen X; Liu S; Chen L Environ Technol; 2014; 35(1-4):514-20. PubMed ID: 24600892 [TBL] [Abstract][Full Text] [Related]
15. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
16. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil. Wei J; Liu X; Wang Q; Wang C; Chen X; Li H Chemosphere; 2014 Feb; 97():92-7. PubMed ID: 24188625 [TBL] [Abstract][Full Text] [Related]
17. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L. Liu X; Mao Y; Zhang X; Gu P; Niu Y; Chen X Chemosphere; 2019 Dec; 237():124502. PubMed ID: 31549640 [TBL] [Abstract][Full Text] [Related]
18. The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene. Zhang X; Liu X; Chai W; Wei J; Wang Q; Li B; Li H J Hazard Mater; 2013 Sep; 260():1001-7. PubMed ID: 23892167 [TBL] [Abstract][Full Text] [Related]
19. Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Zhang X; Chen L; Liu X; Wang C; Chen X; Xu G; Deng K Environ Sci Pollut Res Int; 2014; 21(13):8198-205. PubMed ID: 24920429 [TBL] [Abstract][Full Text] [Related]
20. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. Jiao A; Gao B; Gao M; Liu X; Zhang X; Wang C; Fan D; Han Z; Hu Z Chemosphere; 2022 May; 294():133654. PubMed ID: 35066084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]