BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31606080)

  • 1. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry.
    Li P; Zhen Y; Yu Y
    Methods Enzymol; 2019; 626():301-321. PubMed ID: 31606080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome.
    Zhang Y; Wang J; Ding M; Yu Y
    Nat Methods; 2013 Oct; 10(10):981-4. PubMed ID: 23955771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.
    Zhen Y; Zhang Y; Yu Y
    Cell Rep; 2017 Nov; 21(8):2326-2337. PubMed ID: 29166620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD
    Gibson BA; Kraus WL
    Methods Mol Biol; 2017; 1608():111-135. PubMed ID: 28695507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.
    Gagné JP; Langelier MF; Pascal JM; Poirier GG
    J Proteome Res; 2018 Jul; 17(7):2542-2551. PubMed ID: 29812941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Promise of Proteomics for the Study of ADP-Ribosylation.
    Daniels CM; Ong SE; Leung AK
    Mol Cell; 2015 Jun; 58(6):911-24. PubMed ID: 26091340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-Phase Fragmentation of ADP-Ribosylated Peptides: Arginine-Specific Side-Chain Losses and Their Implication in Database Searches.
    Gehrig PM; Nowak K; Panse C; Leutert M; Grossmann J; Schlapbach R; Hottiger MO
    J Am Soc Mass Spectrom; 2021 Jan; 32(1):157-168. PubMed ID: 33140951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Analysis of the Downstream Signaling Network of PARP1.
    Zhen Y; Yu Y
    Biochemistry; 2018 Jan; 57(4):429-440. PubMed ID: 29327913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics.
    Hendriks IA; Larsen SC; Nielsen ML
    Mol Cell Proteomics; 2019 May; 18(5):1010-1026. PubMed ID: 30798302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation.
    Kalesh K; Lukauskas S; Borg AJ; Snijders AP; Ayyappan V; Leung AKL; Haskard DO; DiMaggio PA
    Sci Rep; 2019 Apr; 9(1):6655. PubMed ID: 31040352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry.
    Anagho HA; Elsborg JD; Hendriks IA; Buch-Larsen SC; Nielsen ML
    Methods Mol Biol; 2023; 2609():251-270. PubMed ID: 36515840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools.
    Dasovich M; Leung AKL
    Mol Cell; 2023 May; 83(10):1552-1572. PubMed ID: 37119811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage.
    Karch KR; Langelier MF; Pascal JM; Garcia BA
    Mol Biosyst; 2017 Nov; 13(12):2660-2671. PubMed ID: 29058739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Techniques for ADP-Ribosylated Substrate Identification.
    Grimaldi G; Catara G; Valente C; Corda D
    Methods Mol Biol; 2018; 1813():25-40. PubMed ID: 30097859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets.
    Rodriguez KM; Buch-Larsen SC; Kirby IT; Siordia IR; Hutin D; Rasmussen M; Grant DM; David LL; Matthews J; Nielsen ML; Cohen MS
    Elife; 2021 Jan; 10():. PubMed ID: 33475084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiomics analysis of the NAD
    Jones A; Kraus WL
    Genes Dev; 2022 May; 36(9-10):601-617. PubMed ID: 35654456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.
    Rogge RA; Gibson BA; Kraus WL
    Methods Mol Biol; 2018; 1813():371-387. PubMed ID: 30097881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous, Quantitative Characterization of Protein ADP-Ribosylation and Protein Phosphorylation in Macrophages.
    Daniels CM; Nuccio A; Kaplan PR; Nita-Lazar A
    Methods Mol Biol; 2020; 2184():145-160. PubMed ID: 32808224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation.
    Larsen SC; Hendriks IA; Lyon D; Jensen LJ; Nielsen ML
    Cell Rep; 2018 Aug; 24(9):2493-2505.e4. PubMed ID: 30157440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.