These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31606093)

  • 1. Differentiation of peptide isomers and epimers by radical-directed dissociation.
    Lambeth TR; Julian RR
    Methods Enzymol; 2019; 626():67-87. PubMed ID: 31606093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of amino acid epimerization and isomerization in crystallin proteins by tandem LC-MS.
    Tao Y; Julian RR
    Anal Chem; 2014 Oct; 86(19):9733-41. PubMed ID: 25188914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry.
    Mizuno H; Shindo T; Ito K; Sakane I; Miyazaki Y; Toyo'oka T; Todoroki K
    J Chromatogr A; 2020 Jul; 1623():461134. PubMed ID: 32345439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins.
    Lyon YA; Sabbah GM; Julian RR
    J Proteome Res; 2017 Apr; 16(4):1797-1805. PubMed ID: 28234481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomerization of Asp residues plays an important role in αA-crystallin dissociation.
    Takata T; Fujii N
    FEBS J; 2016 Mar; 283(5):850-9. PubMed ID: 26700637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometry-based proteomics approaches applied in cataract research.
    Kyselova Z
    Mass Spectrom Rev; 2011; 30(6):1173-84. PubMed ID: 22031278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in α-Crystallin isomerization reveal the activity of protein isoaspartyl methyltransferase (PIMT) in the nucleus and cortex of human lenses.
    Lyon YA; Sabbah GM; Julian RR
    Exp Eye Res; 2018 Jun; 171():131-141. PubMed ID: 29571628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide.
    Takata T; Fujii N
    J Pharm Biomed Anal; 2015 Dec; 116():139-44. PubMed ID: 26188790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lens.
    Fujii N; Satoh K; Harada K; Ishibashi Y
    J Biochem; 1994 Sep; 116(3):663-9. PubMed ID: 7852288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of peptide oxidation by tandem mass spectrometry.
    Schey KL; Finley EL
    Acc Chem Res; 2000 May; 33(5):299-306. PubMed ID: 10813874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional identification and localization of isomers in crystallin peptides using TWIM-MS.
    Wu HT; Julian RR
    Analyst; 2020 Aug; 145(15):5232-5241. PubMed ID: 32608408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS).
    Edwards HM; Wu HT; Julian RR; Jackson GP
    Analyst; 2022 Mar; 147(6):1159-1168. PubMed ID: 35188507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Isomeric Aspartate residues in βB2-crystallin from Aged Human Lens.
    Takata T; Murakami K; Toyama A; Fujii N
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):767-774. PubMed ID: 29654977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of modification sites in glycated crystallin in vitro and in vivo.
    Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z
    Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous stereoinversion and isomerization at the Asp-4 residue in βB2-crystallin from the aged human eye lenses.
    Fujii N; Kawaguchi T; Sasaki H; Fujii N
    Biochemistry; 2011 Oct; 50(40):8628-35. PubMed ID: 21877723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shotgun identification of protein modifications from protein complexes and lens tissue.
    MacCoss MJ; McDonald WH; Saraf A; Sadygov R; Clark JM; Tasto JJ; Gould KL; Wolters D; Washburn M; Weiss A; Clark JI; Yates JR
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7900-5. PubMed ID: 12060738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.