These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 31606110)
1. Retinal image assessment using bi-level adaptive morphological component analysis. Javidi M; Harati A; Pourreza H Artif Intell Med; 2019 Aug; 99():101702. PubMed ID: 31606110 [TBL] [Abstract][Full Text] [Related]
2. Improvement of retinal blood vessel detection using morphological component analysis. Imani E; Javidi M; Pourreza HR Comput Methods Programs Biomed; 2015 Mar; 118(3):263-79. PubMed ID: 25697986 [TBL] [Abstract][Full Text] [Related]
3. Fully automated diabetic retinopathy screening using morphological component analysis. Imani E; Pourreza HR; Banaee T Comput Med Imaging Graph; 2015 Jul; 43():78-88. PubMed ID: 25863517 [TBL] [Abstract][Full Text] [Related]
4. A novel method for retinal exudate segmentation using signal separation algorithm. Imani E; Pourreza HR Comput Methods Programs Biomed; 2016 Sep; 133():195-205. PubMed ID: 27393810 [TBL] [Abstract][Full Text] [Related]
5. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]
6. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058 [TBL] [Abstract][Full Text] [Related]
7. An automated retinal imaging method for the early diagnosis of diabetic retinopathy. Franklin SW; Rajan SE Technol Health Care; 2013; 21(6):557-69. PubMed ID: 24284549 [TBL] [Abstract][Full Text] [Related]
8. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N; Hussain M; Al Adel F; Alzaidi N Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116 [TBL] [Abstract][Full Text] [Related]
9. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
10. Points of interest and visual dictionaries for automatic retinal lesion detection. Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502 [TBL] [Abstract][Full Text] [Related]
11. Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Javidi M; Pourreza HR; Harati A Comput Methods Programs Biomed; 2017 Feb; 139():93-108. PubMed ID: 28187898 [TBL] [Abstract][Full Text] [Related]
12. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy. Akram MU; Tariq A; Anjum MA; Javed MY Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sidhu RK; Sachdeva J; Katoch D Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364 [TBL] [Abstract][Full Text] [Related]
14. Automated detection of exudates for diabetic retinopathy screening. Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845 [TBL] [Abstract][Full Text] [Related]
15. Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Welikala RA; Dehmeshki J; Hoppe A; Tah V; Mann S; Williamson TH; Barman SA Comput Methods Programs Biomed; 2014 May; 114(3):247-61. PubMed ID: 24636803 [TBL] [Abstract][Full Text] [Related]
16. Detection of exudates in retinal images using a pure splitting technique. Jaafar HF; Nandi AK; Al-Nuaimy W Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6745-8. PubMed ID: 21095830 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Sopharak A; Uyyanonvara B; Barman S; Williamson TH Comput Med Imaging Graph; 2008 Dec; 32(8):720-7. PubMed ID: 18930631 [TBL] [Abstract][Full Text] [Related]
19. Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO Comput Biol Med; 2020 Jan; 116():103537. PubMed ID: 31747632 [TBL] [Abstract][Full Text] [Related]
20. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]