These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 31606691)
1. Cold non-enzymatic browning of glucosamine in the presence of metmyoglobin induces glucosone and deoxymyoglobin formation. Zhao X; Hrynets Y; Betti M Food Chem; 2020 Feb; 305():125504. PubMed ID: 31606691 [TBL] [Abstract][Full Text] [Related]
2. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. Hrynets Y; Ndagijimana M; Betti M J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422 [TBL] [Abstract][Full Text] [Related]
3. Impact of myoglobin oxygenation level on color stability of frozen beef steaks. Henriott ML; Herrera NJ; Ribeiro FA; Hart KB; Bland NA; Calkins CR J Anim Sci; 2020 Jul; 98(7):. PubMed ID: 32516410 [TBL] [Abstract][Full Text] [Related]
4. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation. Hrynets Y; Ndagijimana M; Betti M PLoS One; 2015; 10(9):e0139022. PubMed ID: 26406447 [TBL] [Abstract][Full Text] [Related]
5. Iron (Fe(2+))-Catalyzed Glucosamine Browning at 50 °C: Identification and Quantification of Major Flavor Compounds for Antibacterial Activity. Hrynets Y; Bhattacherjee A; Ndagijimana M; Hincapie Martinez DJ; Betti M J Agric Food Chem; 2016 Apr; 64(16):3266-75. PubMed ID: 27043007 [TBL] [Abstract][Full Text] [Related]
6. The effect of amino acids on non-enzymatic browning of glucosamine: Generation of butterscotch aromatic and bioactive health compounds without detectable levels of neo-formed alkylimidazoles. Dhungel P; Bhattacherjee A; Hrynets Y; Betti M Food Chem; 2020 Mar; 308():125612. PubMed ID: 31670192 [TBL] [Abstract][Full Text] [Related]
7. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production. Hong PK; Betti M Food Chem; 2016 Dec; 212():234-43. PubMed ID: 27374528 [TBL] [Abstract][Full Text] [Related]
8. Sous-Vide Nonenzymatic Browning of Glucosamine at Different Temperatures. Dhungel P; Hrynets Y; Betti M J Agric Food Chem; 2018 May; 66(17):4521-4530. PubMed ID: 29658276 [TBL] [Abstract][Full Text] [Related]
9. [Participation of tyrosine residues of myoglobin in the disproportionateness reaction of heme iron (II) and (IV)]. Gorbunov NV; Arduini AA; Grilli A Biull Eksp Biol Med; 1992 Mar; 113(3):255-7. PubMed ID: 1421219 [TBL] [Abstract][Full Text] [Related]
11. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine. Miura Y; Inai M; Honda S; Masuda A; Masuda T J Agric Food Chem; 2014 Oct; 62(39):9472-8. PubMed ID: 25221843 [TBL] [Abstract][Full Text] [Related]
12. Reactions of reducing xenobiotics with oxymyoglobin. Formation of metmyoglobin, ferryl myoglobin and free radicals: an electron spin resonance and chemiluminescence study. Stolze K; Nohl H Biochem Pharmacol; 1995 May; 49(9):1261-7. PubMed ID: 7763307 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin. Goldstein S; Merenyi G; Samuni A J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391 [TBL] [Abstract][Full Text] [Related]
14. Potential of peroxynitrite to alter the color of myoglobin in muscle foods. Connolly BJ; Brannan RG; Decker EA J Agric Food Chem; 2002 Aug; 50(18):5220-3. PubMed ID: 12188633 [TBL] [Abstract][Full Text] [Related]
15. From metmyoglobin to deoxy myoglobin: relaxations of an intermediate state. Lamb DC; Ostermann A; Prusakov VE; Parak FG Eur Biophys J; 1998; 27(2):113-25. PubMed ID: 10950634 [TBL] [Abstract][Full Text] [Related]
16. Effect of heating oxymyoglobin and metmyoglobin on the oxidation of muscle microsomes. Bou R; Guardiola F; Codony R; Faustman C; Elias RJ; Decker EA J Agric Food Chem; 2008 Oct; 56(20):9612-20. PubMed ID: 18816061 [TBL] [Abstract][Full Text] [Related]
17. CIELAB color paths during meat shelf life. Hernández Salueña B; Sáenz Gamasa C; Diñeiro Rubial JM; Alberdi Odriozola C Meat Sci; 2019 Nov; 157():107889. PubMed ID: 31325669 [TBL] [Abstract][Full Text] [Related]
18. Role of bacteria in the oxidation of myoglobin. ROBACH DL; COSTILOW RN Appl Microbiol; 1961 Nov; 9(6):529-33. PubMed ID: 14492670 [TBL] [Abstract][Full Text] [Related]
19. Effects of pyruvate on lipid oxidation and ground beef color. Ramanathan R; Mancini RA; Van Buiten CB; Suman SP; Beach CM J Food Sci; 2012 Aug; 77(8):C886-92. PubMed ID: 22860580 [TBL] [Abstract][Full Text] [Related]
20. Effect of high pressure treatment on the color of fresh and processed meats: A review. Bak KH; Bolumar T; Karlsson AH; Lindahl G; Orlien V Crit Rev Food Sci Nutr; 2019; 59(2):228-252. PubMed ID: 28846443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]