BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 31606701)

  • 1. CD47-targeted bismuth selenide nanoparticles actualize improved photothermal therapy by increasing macrophage phagocytosis of cancer cells.
    Guo Z; Liu Y; Zhou H; Zheng K; Wang D; Jia M; Xu P; Ma K; Cui C; Wang L
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110546. PubMed ID: 31606701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the photothermal therapy efficacy and preventing the surface oxidation of bismuth nanoparticles through the formation of a bismuth@bismuth selenide heterostructure.
    Li B; Cheng Y; Zheng R; Wu X; Qi F; Wu Y; Hu Y; Li X
    J Mater Chem B; 2020 Oct; 8(38):8803-8808. PubMed ID: 32857100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Synthesis of a Bismuth Selenide Hexagon Nanodish Complex for Multimodal Imaging-Guided Combined Antitumor Phototherapy.
    Song Y; Wang J; Liu L; Sun Q; You Q; Cheng Y; Wang Y; Wang S; Tan F; Li N
    Mol Pharm; 2018 May; 15(5):1941-1953. PubMed ID: 29608315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer-drug conjugate nanoparticles.
    Du C; Ding Y; Qian J; Zhang R; Dong CM
    J Mater Chem B; 2019 Jan; 7(3):415-432. PubMed ID: 32254729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-C Chemokine Ligand 2 (CCL2) Recruits Macrophage-Membrane-Camouflaged Hollow Bismuth Selenide Nanoparticles To Facilitate Photothermal Sensitivity and Inhibit Lung Metastasis of Breast Cancer.
    Zhao H; Li L; Zhang J; Zheng C; Ding K; Xiao H; Wang L; Zhang Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31124-31135. PubMed ID: 30141614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construct of MoSe
    Wang Y; Zhao J; Chen Z; Zhang F; Wang Q; Guo W; Wang K; Lin H; Qu F
    Biomaterials; 2019 Oct; 217():119282. PubMed ID: 31260884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis.
    Ho CC; Guo N; Sockolosky JT; Ring AM; Weiskopf K; Özkan E; Mori Y; Weissman IL; Garcia KC
    J Biol Chem; 2015 May; 290(20):12650-63. PubMed ID: 25837251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-Targeting MoS
    Li X; Xiao H; Xiu W; Yang K; Zhang Y; Yuwen L; Yang D; Weng L; Wang L
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):55928-55938. PubMed ID: 34786942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive functionalized MoSe
    Liu Y; Wei C; Lin A; Pan J; Chen X; Zhu X; Gong Y; Yuan G; Chen L; Liu J; Luo Z
    Colloids Surf B Biointerfaces; 2020 May; 189():110820. PubMed ID: 32045843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-stimuli responsive mesoporous carbon nano-platform gated by human serum albumin for cancer thermo-chemotherapy.
    Zhao Q; Wang X; Yang M; Li X; Mao Y; Guan X; Di D; Wang S
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110532. PubMed ID: 31590051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carambola-like Bi
    Zhao Y; Liu Y; Wang Q; Liu J; Zhang S; Zhang T; Wang D; Wang Y; Jin L; Zhang H
    J Mater Chem B; 2021 Sep; 9(35):7271-7277. PubMed ID: 34121105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron-based nanosheets for combined cancer photothermal and photodynamic therapy.
    Kang Y; Ji X; Li Z; Su Z; Zhang S
    J Mater Chem B; 2020 Jun; 8(21):4609-4619. PubMed ID: 32373909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypeptide-Conjugated Second Near-Infrared Organic Fluorophore for Image-Guided Photothermal Therapy.
    Li T; Li C; Ruan Z; Xu P; Yang X; Yuan P; Wang Q; Yan L
    ACS Nano; 2019 Mar; 13(3):3691-3702. PubMed ID: 30790523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma.
    Goto H; Kojima Y; Matsuda K; Kariya R; Taura M; Kuwahara K; Nagai H; Katano H; Okada S
    Eur J Cancer; 2014 Jul; 50(10):1836-1846. PubMed ID: 24726056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors.
    Bian W; Pan Z; Wang Y; Long W; Chen Z; Chen N; Zeng Y; Yuan J; Liu X; Lu YJ; He Y; Zhang K
    Bioorg Chem; 2021 Aug; 113():104954. PubMed ID: 34023651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging.
    Li Z; Hu Y; Howard KA; Jiang T; Fan X; Miao Z; Sun Y; Besenbacher F; Yu M
    ACS Nano; 2016 Jan; 10(1):984-97. PubMed ID: 26655250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy.
    Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells.
    Ko YJ; Lee JW; Kim H; Cho E; Yang Y; Kim IS; Kim SH; Kwon IC
    J Control Release; 2020 Jul; 323():376-386. PubMed ID: 32335154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An antitumor peptide RS17-targeted CD47, design, synthesis, and antitumor activity.
    Wang X; Wang Y; Hu J; Xu H
    Cancer Med; 2021 Mar; 10(6):2125-2136. PubMed ID: 33629544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.