These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 31606924)
1. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. Dulany K; Hepburn K; Goins A; Allen JB J Biomed Mater Res A; 2020 Feb; 108(2):301-315. PubMed ID: 31606924 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Eskandari N; Shafiei SS Mol Biotechnol; 2021 Jun; 63(6):477-490. PubMed ID: 33755861 [TBL] [Abstract][Full Text] [Related]
4. Gelatin-alginate-cerium oxide nanocomposite scaffold for bone regeneration. Purohit SD; Singh H; Bhaskar R; Yadav I; Chou CF; Gupta MK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111111. PubMed ID: 32806319 [TBL] [Abstract][Full Text] [Related]
5. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
7. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
8. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
9. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855 [TBL] [Abstract][Full Text] [Related]
11. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH) Go EJ; Kang EY; Lee SK; Park S; Kim JH; Park W; Kim IH; Choi B; Han DK Biomater Sci; 2020 Feb; 8(3):937-948. PubMed ID: 31833498 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Lu B; Zhu DY; Yin JH; Xu H; Zhang CQ; Ke QF; Gao YS; Guo YP Biofabrication; 2019 Mar; 11(2):025012. PubMed ID: 30754024 [TBL] [Abstract][Full Text] [Related]
13. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. Zou F; Jiang J; Lv F; Xia X; Ma X J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765 [TBL] [Abstract][Full Text] [Related]
14. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
15. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Ghaffari R; Salimi-Kenari H; Fahimipour F; Rabiee SM; Adeli H; Dashtimoghadam E Int J Biol Macromol; 2020 Apr; 148():434-448. PubMed ID: 31953173 [TBL] [Abstract][Full Text] [Related]
17. Biomatrix from goat-waste in sponge/gel/powder form for tissue engineering and synergistic effect of nanoceria. Singh H; Purohit SD; Bhaskar R; Yadav I; Bhushan S; Gupta MK; Gautam S; Showkeen M; Mishra NC Biomed Mater; 2021 Feb; 16(2):025008. PubMed ID: 33440366 [TBL] [Abstract][Full Text] [Related]
19. Cerium oxide nanoparticles disseminated chitosan gelatin scaffold for bone tissue engineering applications. Bhushan S; Singh S; Maiti TK; Das A; Barui A; Chaudhari LR; Joshi MG; Dutt D Int J Biol Macromol; 2023 May; 236():123813. PubMed ID: 36858088 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]