These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31607250)

  • 1. Modelling of jet noise: a perspective from large-eddy simulations.
    Brès GA; Lele SK
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190081. PubMed ID: 31607250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of co-axial jet flows on graphics processing units: the flow and noise analysis.
    Markesteijn AP; Karabasov SA
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190083. PubMed ID: 31607254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic source modelling for turbulent jet noise prediction.
    Xu X; Li X
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190075. PubMed ID: 31607245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fluid injection on turbulence and noise reduction of a supersonic jet.
    Prasad C; Morris P
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190082. PubMed ID: 31607252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband shock-associated noise modelling for high-area-ratio under-expanded jets.
    Gryazev V; Kalyan A; Markesteijn AP; Karabasov SA
    J Acoust Soc Am; 2021 Aug; 150(2):1534. PubMed ID: 34470268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phenomenological approach to jet noise: the two-source model.
    Tam CKW
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190078. PubMed ID: 31607248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and prediction of the peak-radiated sound in subsonic axisymmetric air jets using acoustic analogy-based asymptotic analysis.
    Afsar MZ; Sescu A; Leib SJ
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190073. PubMed ID: 31607256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady active control of noise radiation from highly heated supersonic jets.
    Prasad C; Morris PJ
    J Acoust Soc Am; 2021 Feb; 149(2):1306. PubMed ID: 33639803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments with rectangular supersonic jets with potential noise reduction technology.
    Scupski N; Akatsuka J; McLaughlin DK; Morris PJ
    J Acoust Soc Am; 2022 Jan; 151(1):56. PubMed ID: 35105007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustics from a rectangular supersonic nozzle exhausting over a flat surface.
    Mora P; Baier F; Kailasanath K; Gutmark EJ
    J Acoust Soc Am; 2016 Dec; 140(6):4130. PubMed ID: 28040037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A second golden age of aeroacoustics?
    Lele SK; Nichols JW
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130321. PubMed ID: 25024417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolvent-based modeling of turbulent jet noise.
    Pickering E; Towne A; Jordan P; Colonius T
    J Acoust Soc Am; 2021 Oct; 150(4):2421. PubMed ID: 34717520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-point wavepacket modelling of jet noise.
    Maia IA; Jordan P; Cavalieri AVG; Jaunet V
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190199. PubMed ID: 31423099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method.
    Lew PT; Mongeau L; Lyrintzis A
    J Acoust Soc Am; 2010 Sep; 128(3):1118-27. PubMed ID: 20815448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding jet noise.
    Karabasov SA
    Philos Trans A Math Phys Eng Sci; 2010 Aug; 368(1924):3593-608. PubMed ID: 20603370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field acoustical holography and acoustic power analysis of a simulated, highly heated supersonic jet.
    Leete KM; Gee KL; Liu J; Wall AT
    J Acoust Soc Am; 2022 Mar; 151(3):1989. PubMed ID: 35364919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation.
    Manchester EL; Xu XY
    Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3389. PubMed ID: 32738822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of fan-stage gap-flow data to inform simulation of fan broadband noise.
    Grace S; Gonzalez-Martino I; Casalino D
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190080. PubMed ID: 31607249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time supersonic jet noise predictions from near-field sensors with a wavepacket model.
    Kleine VG; Sasaki K; Cavalieri AVG; Brès GA; Colonius T
    J Acoust Soc Am; 2021 Dec; 150(6):4297. PubMed ID: 34972286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.
    Deck S; Gand F; Brunet V; Ben Khelil S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130325. PubMed ID: 25024411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.