These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31607252)

  • 1. Effect of fluid injection on turbulence and noise reduction of a supersonic jet.
    Prasad C; Morris P
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190082. PubMed ID: 31607252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azimuthal decomposition of the radiated noise from supersonic shock-containing jets.
    Wong MH; Kirby R; Jordan P; Edgington-Mitchell D
    J Acoust Soc Am; 2020 Oct; 148(4):2015. PubMed ID: 33138540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experiments with rectangular supersonic jets with potential noise reduction technology.
    Scupski N; Akatsuka J; McLaughlin DK; Morris PJ
    J Acoust Soc Am; 2022 Jan; 151(1):56. PubMed ID: 35105007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of co-axial jet flows on graphics processing units: the flow and noise analysis.
    Markesteijn AP; Karabasov SA
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190083. PubMed ID: 31607254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of jet noise: a perspective from large-eddy simulations.
    Brès GA; Lele SK
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190081. PubMed ID: 31607250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of supersonic jet turbulence, fine-scale noise, and shock-associated noise from characteristic, bi-conic, faceted, and fluidic injection nozzles.
    Patel TK; Miller SAE
    J Acoust Soc Am; 2021 Jul; 150(1):490. PubMed ID: 34340492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic source modelling for turbulent jet noise prediction.
    Xu X; Li X
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190075. PubMed ID: 31607245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phenomenological approach to jet noise: the two-source model.
    Tam CKW
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190078. PubMed ID: 31607248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband shock-associated noise modelling for high-area-ratio under-expanded jets.
    Gryazev V; Kalyan A; Markesteijn AP; Karabasov SA
    J Acoust Soc Am; 2021 Aug; 150(2):1534. PubMed ID: 34470268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady active control of noise radiation from highly heated supersonic jets.
    Prasad C; Morris PJ
    J Acoust Soc Am; 2021 Feb; 149(2):1306. PubMed ID: 33639803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of fan-stage gap-flow data to inform simulation of fan broadband noise.
    Grace S; Gonzalez-Martino I; Casalino D
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190080. PubMed ID: 31607249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field acoustical holography and acoustic power analysis of a simulated, highly heated supersonic jet.
    Leete KM; Gee KL; Liu J; Wall AT
    J Acoust Soc Am; 2022 Mar; 151(3):1989. PubMed ID: 35364919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement.
    Sadri M; Hejranfar K; Ebrahimi M
    J Acoust Soc Am; 2018 Sep; 144(3):1521. PubMed ID: 30424640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principle description of acoustic radiation of shear flows.
    Wu X; Zhang Z
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190077. PubMed ID: 31607247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-educed broadband equivalent acoustic source model for supersonic jet noise.
    Neilsen TB; Vaughn AB; Gee KL; Akamine M; Okamoto K; Teramoto S; Tsutsumi S
    J Acoust Soc Am; 2019 Nov; 146(5):3409. PubMed ID: 31795640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and prediction of the peak-radiated sound in subsonic axisymmetric air jets using acoustic analogy-based asymptotic analysis.
    Afsar MZ; Sescu A; Leib SJ
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190073. PubMed ID: 31607256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supersonic jet noise source distributions.
    Breen NP; Ahuja KK
    J Acoust Soc Am; 2021 Sep; 150(3):2193. PubMed ID: 34598607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband shock-associated noise from a high-performance military aircraft.
    Vaughn AB; Neilsen TB; Gee KL; Wall AT; Micah Downing J; James MM
    J Acoust Soc Am; 2018 Sep; 144(3):EL242. PubMed ID: 30424662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time supersonic jet noise predictions from near-field sensors with a wavepacket model.
    Kleine VG; Sasaki K; Cavalieri AVG; Brès GA; Colonius T
    J Acoust Soc Am; 2021 Dec; 150(6):4297. PubMed ID: 34972286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the axisymmetric stability of heated supersonic round jets.
    Samanta A
    Proc Math Phys Eng Sci; 2016 Apr; 472(2188):20150817. PubMed ID: 27274691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.