These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31607756)

  • 1. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC).
    Golestanirad L; Angelone LM; Kirsch J; Downs S; Keil B; Bonmassar G; Wald LL
    IEEE Trans Microw Theory Tech; 2019 Mar; 67(3):1265-1273. PubMed ID: 31607756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of frequency (64-498 MHz) on specific absorption rate adjacent to metallic orthopedic screws in MRI: A numerical simulation study.
    Jacobs P; Fagan AJ
    Med Phys; 2024 Feb; 51(2):1074-1082. PubMed ID: 38116822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Segment Leads To Reduce RF Heating in MRI: A Computational Evaluation at 1.5T and 3T.
    Zaidi T; Bonmassar G; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting RF Heating of Conductive Leads During Magnetic Resonance Imaging at 1.5 T: A Machine Learning Approach
    Zheng C; Chen X; Nguyen BT; Sanpitak P; Vu J; Bagci U; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4204-4208. PubMed ID: 34892151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil.
    Fagan AJ; Jacobs PS; Hulshizer TC; Rossman PJ; Frick MA; Amrami KK; Felmlee JP
    Med Phys; 2021 Feb; 48(2):781-790. PubMed ID: 33294999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
    Vu J; Sanpitak P; Bhusal B; Jiang F; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
    Chen X; Zheng C; Golestanirad L
    J Magn Reson; 2023 Apr; 349():107384. PubMed ID: 36842429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T.
    Vu J; Bhusal B; Nguyen BT; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6107-6110. PubMed ID: 33019364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant.
    Mattei E; Gentili G; Censi F; Triventi M; Calcagnini G
    Magn Reson Med; 2015 Jan; 73(1):390-400. PubMed ID: 24436030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wire-based sternal closure: MRI-related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study.
    Zheng J; Xia M; Kainz W; Chen J
    Magn Reson Med; 2020 Mar; 83(3):1055-1065. PubMed ID: 31468593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.