These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31608508)

  • 21. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces.
    Fang Y; Prominski A; Rotenberg MY; Meng L; Acarón Ledesma H; Lv Y; Yue J; Schaumann E; Jeong J; Yamamoto N; Jiang Y; Elbaz B; Wei W; Tian B
    Nat Nanotechnol; 2021 Feb; 16(2):206-213. PubMed ID: 33288948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric Biomaterials for Sensors and Actuators.
    Chorsi MT; Curry EJ; Chorsi HT; Das R; Baroody J; Purohit PK; Ilies H; Nguyen TD
    Adv Mater; 2019 Jan; 31(1):e1802084. PubMed ID: 30294947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface.
    Parlak O; Ashaduzzaman M; Kollipara SB; Tiwari A; Turner AP
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23837-47. PubMed ID: 26440202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printable Bioelectronics To Investigate Functional Biological Interfaces.
    Manoli K; Magliulo M; Mulla MY; Singh M; Sabbatini L; Palazzo G; Torsi L
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12562-76. PubMed ID: 26420480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic Bioelectronics: Materials and Biocompatibility.
    Feron K; Lim R; Sherwood C; Keynes A; Brichta A; Dastoor PC
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30104515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge.
    Fidanovski K; Mawad D
    Adv Healthc Mater; 2019 May; 8(10):e1900053. PubMed ID: 30941922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses.
    Yoon H; Lee SH; Kwon OS; Song HS; Oh EH; Park TH; Jang J
    Angew Chem Int Ed Engl; 2009; 48(15):2755-8. PubMed ID: 19274689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MRI magnetic compatible electrical neural interface: From materials to application.
    Zhang Y; Le S; Li H; Ji B; Wang MH; Tao J; Liang JQ; Zhang XY; Kang XY
    Biosens Bioelectron; 2021 Dec; 194():113592. PubMed ID: 34507098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics.
    Spyropoulos GD; Gelinas JN; Khodagholy D
    Sci Adv; 2019 Feb; 5(2):eaau7378. PubMed ID: 30820453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformable bioelectronic interfaces: Mapping the road ahead.
    Schiavone G; Lacour SP
    Sci Transl Med; 2019 Jul; 11(503):. PubMed ID: 31366582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioelectronic tongues: New trends and applications in water and food analysis.
    Cetó X; Voelcker NH; Prieto-Simón B
    Biosens Bioelectron; 2016 May; 79():608-26. PubMed ID: 26761617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling cell behavior through the design of polymer surfaces.
    Alves NM; Pashkuleva I; Reis RL; Mano JF
    Small; 2010 Oct; 6(20):2208-20. PubMed ID: 20848593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces.
    Fallegger F; Trouillet A; Coen FV; Schiavone G; Lacour SP
    APL Bioeng; 2023 Sep; 7(3):036109. PubMed ID: 37600068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices.
    Wan Y; Wang C; Zhang B; Liu Y; Yang H; Liu F; Xu J; Xu S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly conformable chip-in-foil implants for neural applications.
    Stieglitz T; Gueli C; Martens J; Floto N; Eickenscheidt M; Sporer M; Ortmanns M
    Microsyst Nanoeng; 2023; 9():54. PubMed ID: 37180455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomaterials integrated with electronic elements: en route to bioelectronics.
    Willner I; Willner B
    Trends Biotechnol; 2001 Jun; 19(6):222-30. PubMed ID: 11356284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-soluble conjugated polymers for bioelectronic systems.
    Wang Z; Lin H; Zhang M; Yu W; Zhu C; Wang P; Huang Y; Lv F; Bai H; Wang S
    Mater Horiz; 2023 Apr; 10(4):1210-1233. PubMed ID: 36752220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics.
    Cea C; Zhao Z; Wisniewski DJ; Spyropoulos GD; Polyravas A; Gelinas JN; Khodagholy D
    Nat Mater; 2023 Oct; 22(10):1227-1235. PubMed ID: 37429941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective.
    Obidin N; Tasnim F; Dagdeviren C
    Adv Mater; 2020 Apr; 32(15):e1901482. PubMed ID: 31206827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.