These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31608516)

  • 1. Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible.
    Bessa MA; Glowacki P; Houlder M
    Adv Mater; 2019 Nov; 31(48):e1904845. PubMed ID: 31608516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization.
    Sakurai A; Yada K; Simomura T; Ju S; Kashiwagi M; Okada H; Nagao T; Tsuda K; Shiomi J
    ACS Cent Sci; 2019 Feb; 5(2):319-326. PubMed ID: 30834320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water.
    Laureti S; Hutchins DA; Astolfi L; Watson RL; Thomas PJ; Burrascano P; Nie L; Freear S; Askari M; Clare AT; Ricci M
    Sci Rep; 2020 Jun; 10(1):10601. PubMed ID: 32606299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metamaterial Reverse Multiple Prediction Method Based on Deep Learning.
    Hou Z; Zhang P; Ge M; Li J; Tang T; Shen J; Li C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.
    Ma W; Cheng F; Liu Y
    ACS Nano; 2018 Jun; 12(6):6326-6334. PubMed ID: 29856595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness.
    Tancogne-Dejean T; Diamantopoulou M; Gorji MB; Bonatti C; Mohr D
    Adv Mater; 2018 Nov; 30(45):e1803334. PubMed ID: 30230617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Metamaterial: Fundamental, Application, and Outlook.
    Wang J; Dai G; Huang J
    iScience; 2020 Oct; 23(10):101637. PubMed ID: 33103076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive Manufacture of Small-Scale Metamaterial Structures for Acoustic and Ultrasonic Applications.
    Gardiner A; Daly P; Domingo-Roca R; Windmill JFC; Feeney A; Jackson-Camargo JC
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34072508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of metamaterials and metamaterial-microcavity based on deep neural networks.
    Lan G; Wang Y; Ou JY
    Nanoscale Adv; 2022 Nov; 4(23):5137-5143. PubMed ID: 36504733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction Network of Metamaterial with Split Ring Resonator Based on Deep Learning.
    Hou Z; Tang T; Shen J; Li C; Li F
    Nanoscale Res Lett; 2020 Apr; 15(1):83. PubMed ID: 32296958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization.
    Gao H; Zhong S; Zhang W; Igou T; Berger E; Reid E; Zhao Y; Lambeth D; Gan L; Afolabi MA; Tong Z; Lan G; Chen Y
    Environ Sci Technol; 2022 Feb; 56(4):2572-2581. PubMed ID: 34968041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Chemical Space with Machine Learning.
    ArĂºs-Pous J; Awale M; Probst D; Reymond JL
    Chimia (Aarau); 2019 Dec; 73(12):1018-1023. PubMed ID: 31883554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group-theory approach to tailored electromagnetic properties of metamaterials: an inverse-problem solution.
    Reinke CM; De la Mata Luque TM; Su MF; Sinclair MB; El-Kady I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066603. PubMed ID: 21797503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Cellular Materials through Multiscale, Variable-Section Inner Designs: Mechanical Attributes and Neural Network Modeling.
    Karathanasopoulos N; Rodopoulos DC
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational discovery of extremal microstructure families.
    Chen D; Skouras M; Zhu B; Matusik W
    Sci Adv; 2018 Jan; 4(1):eaao7005. PubMed ID: 29376124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft optical metamaterials.
    Chen Y; Ai B; Wong ZJ
    Nano Converg; 2020 May; 7(1):18. PubMed ID: 32451734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Learning of Adatom Interactions from Atomically Resolved Imaging Data.
    Valleti SMP; Zou Q; Xue R; Vlcek L; Ziatdinov M; Vasudevan R; Fu M; Yan J; Mandrus D; Gai Z; Kalinin SV
    ACS Nano; 2021 Jun; 15(6):9649-9657. PubMed ID: 34105943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.