These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31608640)

  • 1. Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation.
    Marguet SC; Stevenson MJ; Shafaat HS
    J Phys Chem B; 2019 Nov; 123(46):9792-9800. PubMed ID: 31608640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Driven Hydrogen Evolution by Nickel-Substituted Rubredoxin.
    Stevenson MJ; Marguet SC; Schneider CR; Shafaat HS
    ChemSusChem; 2017 Nov; 10(22):4424-4429. PubMed ID: 28948691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
    Slater JW; Shafaat HS
    J Phys Chem Lett; 2015 Sep; 6(18):3731-6. PubMed ID: 26722748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies.
    Lee HJ; Lian LY; Scrutton NS
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):131-6. PubMed ID: 9359843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide reductase: different interaction modes with its two redox partners.
    Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR
    Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Watching the dynamics of electrons and atoms at work in solar energy conversion.
    Canton SE; Zhang X; Liu Y; Zhang J; Pápai M; Corani A; Smeigh AL; Smolentsev G; Attenkofer K; Jennings G; Kurtz CA; Li F; Harlang T; Vithanage D; Chabera P; Bordage A; Sun L; Ott S; Wärnmark K; Sundström V
    Faraday Discuss; 2015; 185():51-68. PubMed ID: 26400760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer.
    Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C
    J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties.
    Kümmerle R; Zhuang-Jackson H; Gaillard J; Moulis JM
    Biochemistry; 1997 Dec; 36(50):15983-91. PubMed ID: 9398333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.
    Kärkäs MD; Johnston EV; Verho O; Akermark B
    Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme.
    Slater JW; Marguet SC; Cirino SL; Maugeri PT; Shafaat HS
    Inorg Chem; 2017 Apr; 56(7):3926-3938. PubMed ID: 28323426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis.
    Khalafallah D; Zhi M; Hong Z
    Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubredoxin/rubredoxin reductase of Pseudomonas oleovorans: a model system for investigating interprotein electron transfer.
    Lee HJ; Lian LY; Scrutton NS
    Biochem Soc Trans; 1996 Aug; 24(3):447S. PubMed ID: 8878991
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies.
    Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M
    Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.