These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31608915)

  • 1. Perpetual sedimentation for the continuous delivery of particulate suspensions.
    Lane SIR; Butement J; Harrington J; Underwood T; Shrimpton J; West J
    Lab Chip; 2019 Nov; 19(22):3771-3775. PubMed ID: 31608915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of five samplers to trap suspended particulate matter and microplastic particles of different sizes.
    Harhash M; Schroeder H; Zavarsky A; Kamp J; Linkhorst A; Lauschke T; Dierkes G; Ternes TA; Duester L
    Chemosphere; 2023 Oct; 338():139479. PubMed ID: 37442386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamically induced helical particle drift due to patterned surfaces.
    Chase DL; Kurzthaler C; Stone HA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2202082119. PubMed ID: 35901211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugo-pneumatic sedimentation, re-suspension and transport of microparticles.
    Zhao Y; Schwemmer F; Zehnle S; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2015 Nov; 15(21):4133-7. PubMed ID: 26348615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound absorption by suspensions of nonspherical particles: measurements compared with predictions using various particle sizing techniques.
    Richards SD; Leighton TG; Brown NR
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1841-50. PubMed ID: 14587585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Light Dispersed Particles on the Stability of Dense Suspended Particles Against Sedimentation.
    Yang YJ; Franses EI; Corti DS
    J Phys Chem B; 2019 Jan; 123(4):922-935. PubMed ID: 30605618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suspended particulate matter <2.5 μm (SPM
    Zhou Z; Yan R; Liu X; Xu Z; Zhang J; Yi Q
    Sci Total Environ; 2024 Feb; 912():168780. PubMed ID: 38007111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray drying lactose from organic solvent suspensions for aerosol delivery to the lungs.
    Ke WR; Chang RYK; Kwok PCL; Chen D; Chan HK
    Int J Pharm; 2020 Dec; 591():119984. PubMed ID: 33069893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of soluble polymer binder on particle distribution in a drying particulate coating.
    Buss F; Roberts CC; Crawford KS; Peters K; Francis LF
    J Colloid Interface Sci; 2011 Jul; 359(1):112-20. PubMed ID: 21497825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of particulate suspensions with non-Newtonian fluids in capillaries.
    Xia B; Krueger PS
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210615. PubMed ID: 35756882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Focused Beam Reflectance Measurement (FBRM) for Analysis of Pharmaceutical Suspensions in Preclinical Development.
    Dave K; Luner PE; Forness C; Baker D; Jankovsky C; Chen S
    AAPS PharmSciTech; 2018 Jan; 19(1):155-165. PubMed ID: 28639177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Open Microfluidic Chip for Continuous Sampling of Solute from a Turbulent Particle Suspension.
    Shallan AI; Tavares Y; Navvab Kashani M; Breadmore MC; Priest C
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2654-2657. PubMed ID: 33037834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass-specific scattering cross sections of suspended sediments and aggregates: theoretical limits and applications.
    Stavn RH
    Opt Express; 2012 Jan; 20(1):201-19. PubMed ID: 22274344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nonionic surfactants on aqueous primidone suspensions.
    Schott H; Royce AE
    J Pharm Sci; 1985 Sep; 74(9):957-62. PubMed ID: 4067849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.