These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31609085)

  • 21. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep.
    Clarke SM; Henry HM; Dodds KG; Jowett TW; Manley TR; Anderson RM; McEwan JC
    PLoS One; 2014; 9(4):e93392. PubMed ID: 24740141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quality control of genotypes using heritability estimates of gene content at the marker.
    Forneris NS; Legarra A; Vitezica ZG; Tsuruta S; Aguilar I; Misztal I; Cantet RJ
    Genetics; 2015 Mar; 199(3):675-81. PubMed ID: 25567991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates.
    Fountain ED; Pauli JN; Reid BN; Palsbøll PJ; Peery MZ
    Mol Ecol Resour; 2016 Jul; 16(4):966-78. PubMed ID: 26946083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The future of parentage analysis: From microsatellites to SNPs and beyond.
    Flanagan SP; Jones AG
    Mol Ecol; 2019 Feb; 28(3):544-567. PubMed ID: 30575167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p-loci: a computer program for choosing the most efficient set of loci for parentage assignment.
    Matson SE; Camara MD; Eichert W; Banks MA
    Mol Ecol Resour; 2008 Jul; 8(4):765-8. PubMed ID: 21585886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genotyping-free parentage assignment using RAD-seq reads.
    Chen SY; Li C; Luo Z; Li X; Gan J; Jia X; Lai SJ; Wang W
    Ecol Evol; 2020 Jul; 10(14):7783-7791. PubMed ID: 32760564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets.
    Bradford HL; Masuda Y; Cole JB; Misztal I; VanRaden PM
    J Dairy Sci; 2019 Mar; 102(3):2308-2318. PubMed ID: 30639024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing.
    Palaiokostas C; Cariou S; Bestin A; Bruant JS; Haffray P; Morin T; Cabon J; Allal F; Vandeputte M; Houston RD
    Genet Sel Evol; 2018 Jun; 50(1):30. PubMed ID: 29884113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs.
    Calus MP; Mulder HA; Bastiaansen JW
    Genet Sel Evol; 2011 Oct; 43(1):34. PubMed ID: 21988752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of sire contribution and breed-of-origin of alleles in a three-way crossbred broiler dataset.
    Calus MPL; Vandenplas J; Hulsegge I; Borg R; Henshall JM; Hawken R
    Poult Sci; 2019 Dec; 98(12):6270-6280. PubMed ID: 31393589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting genotyping errors at Schistosoma japonicum microsatellites with pedigree information.
    Gao YM; Lu DB; Ding H; Lamberton PH
    Parasit Vectors; 2015 Sep; 8():452. PubMed ID: 26350750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The potential costs of accounting for genotypic errors in molecular parentage analyses.
    Morrissey MB; Wilson AJ
    Mol Ecol; 2005 Nov; 14(13):4111-21. PubMed ID: 16262862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale parentage inference with SNPs: an efficient algorithm for statistical confidence of parent pair allocations.
    Anderson EC
    Stat Appl Genet Mol Biol; 2012 Nov; 11(5):. PubMed ID: 23152426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird.
    Weinman LR; Solomon JW; Rubenstein DR
    Mol Ecol Resour; 2015 May; 15(3):502-11. PubMed ID: 25224810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent development of allele frequencies and exclusion probabilities of microsatellites used for parentage control in the German Holstein Friesian cattle population.
    Brenig B; Schütz E
    BMC Genet; 2016 Jan; 17():18. PubMed ID: 26747197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximum likelihood parentage assignment using quantitative genotypes.
    Hamilton MG
    Heredity (Edinb); 2021 Jun; 126(6):884-895. PubMed ID: 33692533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative accuracy of three common methods of parentage analysis in natural populations.
    Harrison HB; Saenz-Agudelo P; Planes S; Jones GP; Berumen ML
    Mol Ecol; 2013 Feb; 22(4):1158-70. PubMed ID: 23278953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification.
    McClure MC; McCarthy J; Flynn P; McClure JC; Dair E; O'Connell DK; Kearney JF
    Front Genet; 2018; 9():84. PubMed ID: 29599798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parentage analysis with few contributing breeders: validation and improvement.
    Duchesne P; Meldgaard T; Berrebi P
    J Hered; 2008; 99(3):323-34. PubMed ID: 18252730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single nucleotide polymorphism set for paternal identification to reduce the costs of trait recording in commercial pig breeding.
    Harlizius B; Lopes MS; Duijvesteijn N; van de Goor LH; van Haeringen WA; Panneman H; Guimarães SE; Merks JW; Knol EF
    J Anim Sci; 2011 Jun; 89(6):1661-8. PubMed ID: 21239666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.