These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31609120)

  • 21. From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation.
    Zhang C; Yuan J; Lu J; Hou Y; Xiong W; Lu H
    Biomaterials; 2018 Sep; 178():728-737. PubMed ID: 29428163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antifouling poly(β-peptoid)s.
    Lin S; Zhang B; Skoumal MJ; Ramunno B; Li X; Wesdemiotis C; Liu L; Jia L
    Biomacromolecules; 2011 Jul; 12(7):2573-82. PubMed ID: 21585194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Fouling Characteristics of Ultrathin Zwitterionic Cysteine SAMs.
    Lin P; Chuang TL; Chen PZ; Lin CW; Gu FX
    Langmuir; 2019 Feb; 35(5):1756-1767. PubMed ID: 30056710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning.
    Zhou Z; Yu P; Geller HM; Ober CK
    Biomacromolecules; 2013 Feb; 14(2):529-37. PubMed ID: 23336729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces.
    Gong YK; Liu LP; Messersmith PB
    Macromol Biosci; 2012 Jul; 12(7):979-85. PubMed ID: 22610777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable Polymer with Hydrolysis-Induced Zwitterions for Antibiofouling.
    Xie Q; Xie Q; Pan J; Ma C; Zhang G
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11213-11220. PubMed ID: 29527897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell proliferation on stereoregular isotactic-poly(propylene oxide) as a bulk substrate.
    Ajiro H; Akashi M
    Biomacromolecules; 2010 Nov; 11(11):2840-4. PubMed ID: 20923199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "Hearing Loss" in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers.
    Luan Y; Li D; Wei T; Wang M; Tang Z; Brash JL; Chen H
    Anal Chem; 2017 Apr; 89(7):4184-4191. PubMed ID: 28276243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-biofouling property of well-defined concentrated polymer brushes.
    Yoshikawa C; Qiu J; Huang CF; Shimizu Y; Suzuki J; van den Bosch E
    Colloids Surf B Biointerfaces; 2015 Mar; 127():213-20. PubMed ID: 25679494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces.
    Yuan S; Wan D; Liang B; Pehkonen SO; Ting YP; Neoh KG; Kang ET
    Langmuir; 2011 Mar; 27(6):2761-74. PubMed ID: 21338094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of protein adsorption induced by surface roughness.
    Rechendorff K; Hovgaard MB; Foss M; Zhdanov VP; Besenbacher F
    Langmuir; 2006 Dec; 22(26):10885-8. PubMed ID: 17154557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content.
    Bratek-Skicki A; Eloy P; Morga M; Dupont-Gillain C
    Langmuir; 2018 Mar; 34(9):3037-3048. PubMed ID: 29406751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEG-mimetic peptoid reduces protein fouling of polysulfone hollow fibers.
    Mahmoudi N; Reed L; Moix A; Alshammari N; Hestekin J; Servoss SL
    Colloids Surf B Biointerfaces; 2017 Jan; 149():23-29. PubMed ID: 27716528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixed Polymer Brushes for the Selective Capture and Release of Proteins.
    Bratek-Skicki A; Cristaudo V; Savocco J; Nootens S; Morsomme P; Delcorte A; Dupont-Gillain C
    Biomacromolecules; 2019 Feb; 20(2):778-789. PubMed ID: 30605604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein adsorption on polymer-modified silica particle surface.
    Tsukagoshi T; Kondo Y; Yoshino N
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):101-7. PubMed ID: 17118630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures.
    Koenig M; Kasputis T; Schmidt D; Rodenhausen KB; Eichhorn KJ; Pannier AK; Schubert M; Stamm M; Uhlmann P
    Anal Bioanal Chem; 2014 Nov; 406(28):7233-42. PubMed ID: 25240934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes.
    Delcroix MF; Laurent S; Huet GL; Dupont-Gillain CC
    Acta Biomater; 2015 Jan; 11():68-79. PubMed ID: 25234158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.