These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31609330)

  • 21. Transgenic fish systems and their application in ecotoxicology.
    Lee O; Green JM; Tyler CR
    Crit Rev Toxicol; 2015 Feb; 45(2):124-41. PubMed ID: 25394772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Resolution Imaging of DNA Methylation Dynamics using a Zebrafish Reporter.
    Zhang R; Liu L; Yao Y; Fei F; Wang F; Yang Q; Gui Y; Wang X
    Sci Rep; 2017 Jul; 7(1):5430. PubMed ID: 28710355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemokine signaling regulates sensory cell migration in zebrafish.
    Li Q; Shirabe K; Kuwada JY
    Dev Biol; 2004 May; 269(1):123-36. PubMed ID: 15081362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, expression and characterization of CCL21 and CCL25 chemokines in zebrafish.
    Lu IN; Chiang BL; Lou KL; Huang PT; Yao CC; Wang JS; Lin LD; Jeng JH; Chang BE
    Dev Comp Immunol; 2012 Oct; 38(2):203-14. PubMed ID: 22842207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging.
    Sassen WA; Lehne F; Russo G; Wargenau S; Dübel S; Köster RW
    Dev Biol; 2017 Oct; 430(1):18-31. PubMed ID: 28802829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vivo Imaging of Transgenic Gene Expression in Individual Retinal Progenitors in Chimeric Zebrafish Embryos to Study Cell Nonautonomous Influences.
    Dudczig S; Currie PD; Poggi L; Jusuf PR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cracking the genome's second code: enhancer detection by combined phylogenetic footprinting and transgenic fish and frog embryos.
    Allende ML; Manzanares M; Tena JJ; Feijóo CG; Gómez-Skarmeta JL
    Methods; 2006 Jul; 39(3):212-9. PubMed ID: 16806968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calnexin is required for zebrafish posterior lateral line development.
    Hung IC; Cherng BW; Hsu WM; Lee SJ
    Int J Dev Biol; 2013; 57(5):427-38. PubMed ID: 23873374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica nanoparticles inhibit macrophage activity and angiogenesis via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos.
    Duan J; Hu H; Feng L; Yang X; Sun Z
    Chemosphere; 2017 Sep; 183():483-490. PubMed ID: 28570891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging Subcellular Structures in the Living Zebrafish Embryo.
    Engerer P; Plucinska G; Thong R; Trovò L; Paquet D; Godinho L
    J Vis Exp; 2016 Apr; (110):e53456. PubMed ID: 27078038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment of oct4:gfp transgenic zebrafish line for monitoring cellular multipotency by GFP fluorescence.
    Kato H; Abe K; Yokota S; Matsuno R; Mikekado T; Yokoi H; Suzuki T
    In Vitro Cell Dev Biol Anim; 2015 Jan; 51(1):42-9. PubMed ID: 25515246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemokine-guided cell migration and motility in zebrafish development.
    Bussmann J; Raz E
    EMBO J; 2015 May; 34(10):1309-18. PubMed ID: 25762592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish.
    Walton EM; Cronan MR; Beerman RW; Tobin DM
    PLoS One; 2015; 10(10):e0138949. PubMed ID: 26445458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligodendrocyte development and myelination in GFP-transgenic zebrafish.
    Yoshida M; Macklin WB
    J Neurosci Res; 2005 Jul; 81(1):1-8. PubMed ID: 15920740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish.
    Auer TO; Duroure K; Concordet JP; Del Bene F
    Nat Protoc; 2014 Dec; 9(12):2823-40. PubMed ID: 25393779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage migration inhibitory factor (MIF) is essential for development of zebrafish, Danio rerio.
    Ito K; Yoshiura Y; Ototake M; Nakanishi T
    Dev Comp Immunol; 2008; 32(6):664-72. PubMed ID: 18068224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials.
    Zhang X; Stockhammer OW; de Boer L; Vischer NOE; Spaink HP; Grijpma DW; Zaat SAJ
    J Biomed Mater Res A; 2017 Sep; 105(9):2522-2532. PubMed ID: 28509403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters.
    Ju B; Xu Y; He J; Liao J; Yan T; Hew CL; Lam TJ; Gong Z
    Dev Genet; 1999; 25(2):158-67. PubMed ID: 10440850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos.
    Jeong K; Jeong JY; Lee HO; Choi E; Lee H
    Dev Biol; 2010 Sep; 345(1):34-48. PubMed ID: 20553902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8.
    Gong Z; Ju B; Wang X; He J; Wan H; Sudha PM; Yan T
    Dev Dyn; 2002 Mar; 223(2):204-15. PubMed ID: 11836785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.