These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31609419)
1. Improving the phenotype risk score as a scalable approach to identifying patients with Mendelian disease. Bastarache L; Hughey JJ; Goldstein JA; Bastraache JA; Das S; Zaki NC; Zeng C; Tang LA; Roden DM; Denny JC J Am Med Inform Assoc; 2019 Dec; 26(12):1437-1447. PubMed ID: 31609419 [TBL] [Abstract][Full Text] [Related]
2. The phers R package: using phenotype risk scores based on electronic health records to study Mendelian disease and rare genetic variants. Aref L; Bastarache L; Hughey JJ Bioinformatics; 2022 Oct; 38(21):4972-4974. PubMed ID: 36083022 [TBL] [Abstract][Full Text] [Related]
3. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. Wei WQ; Bastarache LA; Carroll RJ; Marlo JE; Osterman TJ; Gamazon ER; Cox NJ; Roden DM; Denny JC PLoS One; 2017; 12(7):e0175508. PubMed ID: 28686612 [TBL] [Abstract][Full Text] [Related]
5. Using Phecodes for Research with the Electronic Health Record: From PheWAS to PheRS. Bastarache L Annu Rev Biomed Data Sci; 2021 Jul; 4():1-19. PubMed ID: 34465180 [TBL] [Abstract][Full Text] [Related]
6. Linking rare and common disease vocabularies by mapping between the human phenotype ontology and phecodes. McArthur E; Bastarache L; Capra JA JAMIA Open; 2023 Apr; 6(1):ooad007. PubMed ID: 36875690 [TBL] [Abstract][Full Text] [Related]
7. Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. Salvatore M; Beesley LJ; Fritsche LG; Hanauer D; Shi X; Mondul AM; Pearce CL; Mukherjee B J Biomed Inform; 2021 Jan; 113():103652. PubMed ID: 33279681 [TBL] [Abstract][Full Text] [Related]
8. Phenotype Risk Score but Not Genetic Risk Score Aids in Identifying Individuals With Systemic Lupus Erythematosus in the Electronic Health Record. Barnado A; Wheless L; Camai A; Green S; Han B; Katta A; Denny JC; Sawalha AH Arthritis Rheumatol; 2023 Sep; 75(9):1532-1541. PubMed ID: 37096581 [TBL] [Abstract][Full Text] [Related]
9. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records. Hoffman SR; Vines AI; Halladay JR; Pfaff E; Schiff L; Westreich D; Sundaresan A; Johnson LS; Nicholson WK Am J Obstet Gynecol; 2018 Jun; 218(6):610.e1-610.e7. PubMed ID: 29432754 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of claim data in the identification and classification of adults with congenital heart diseases in electronic medical records. Cohen S; Jannot AS; Iserin L; Bonnet D; Burgun A; Escudié JB Arch Cardiovasc Dis; 2019 Jan; 112(1):31-43. PubMed ID: 30612895 [TBL] [Abstract][Full Text] [Related]
11. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713 [TBL] [Abstract][Full Text] [Related]
12. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation. Wu P; Gifford A; Meng X; Li X; Campbell H; Varley T; Zhao J; Carroll R; Bastarache L; Denny JC; Theodoratou E; Wei WQ JMIR Med Inform; 2019 Nov; 7(4):e14325. PubMed ID: 31553307 [TBL] [Abstract][Full Text] [Related]
13. Relational machine learning for electronic health record-driven phenotyping. Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Precision of ICD-10 Codes for Uveitis in 2 Electronic Health Record Systems. Palestine AG; Merrill PT; Saleem SM; Jabs DA; Thorne JE JAMA Ophthalmol; 2018 Oct; 136(10):1186-1190. PubMed ID: 30054618 [TBL] [Abstract][Full Text] [Related]
15. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. Wei WQ; Teixeira PL; Mo H; Cronin RM; Warner JL; Denny JC J Am Med Inform Assoc; 2016 Apr; 23(e1):e20-7. PubMed ID: 26338219 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health Record Data. Stein JD; Rahman M; Andrews C; Ehrlich JR; Kamat S; Shah M; Boese EA; Woodward MA; Cowall J; Trager EH; Narayanaswamy P; Hanauer DA JAMA Ophthalmol; 2019 May; 137(5):491-497. PubMed ID: 30789656 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic convergence: a novel phenomenon in the diagnostic process of Mendelian genetic disorders. Tinker RJ; Peterson J; Bastarache L medRxiv; 2023 Jan; ():. PubMed ID: 36711865 [TBL] [Abstract][Full Text] [Related]
18. Temporal condition pattern mining in large, sparse electronic health record data: A case study in characterizing pediatric asthma. Campbell EA; Bass EJ; Masino AJ J Am Med Inform Assoc; 2020 Apr; 27(4):558-566. PubMed ID: 32049282 [TBL] [Abstract][Full Text] [Related]
19. Text mining applied to electronic cardiovascular procedure reports to identify patients with trileaflet aortic stenosis and coronary artery disease. Small AM; Kiss DH; Zlatsin Y; Birtwell DL; Williams H; Guerraty MA; Han Y; Anwaruddin S; Holmes JH; Chirinos JA; Wilensky RL; Giri J; Rader DJ J Biomed Inform; 2017 Aug; 72():77-84. PubMed ID: 28624641 [TBL] [Abstract][Full Text] [Related]
20. Developing and evaluating pediatric phecodes (Peds-Phecodes) for high-throughput phenotyping using electronic health records. Grabowska ME; Van Driest SL; Robinson JR; Patrick AE; Guardo C; Gangireddy S; Ong HH; Feng Q; Carroll R; Kannankeril PJ; Wei WQ J Am Med Inform Assoc; 2024 Jan; 31(2):386-395. PubMed ID: 38041473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]