These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31609497)

  • 1. Freeform, Reconfigurable Embedded Printing of All-Aqueous 3D Architectures.
    Luo G; Yu Y; Yuan Y; Chen X; Liu Z; Kong T
    Adv Mater; 2019 Dec; 31(49):e1904631. PubMed ID: 31609497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication.
    Shiwarski DJ; Hudson AR; Tashman JW; Feinberg AW
    APL Bioeng; 2021 Mar; 5(1):010904. PubMed ID: 33644626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating Robust Constructs with Internal Phase Nanostructures via Liquid-in-Liquid 3D Printing.
    Honaryar H; LaNasa JA; Lloyd EC; Hickey RJ; Niroobakhsh Z
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100445. PubMed ID: 34569682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review.
    Dzobo K; Motaung KSCM; Adesida A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
    Hinton TJ; Jallerat Q; Palchesko RN; Park JH; Grodzicki MS; Shue HJ; Ramadan MH; Hudson AR; Feinberg AW
    Sci Adv; 2015 Oct; 1(9):e1500758. PubMed ID: 26601312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeform Three-Dimensionally Printed Microchannels via Surface-Initiated Photopolymerization Combined with Sacrificial Molding.
    Chen L; Kenkel SM; Hsieh PH; Gryka MC; Bhargava R
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50105-50112. PubMed ID: 33091299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Bioprinting: from Benches to Translational Applications.
    Heinrich MA; Liu W; Jimenez A; Yang J; Akpek A; Liu X; Pi Q; Mu X; Hu N; Schiffelers RM; Prakash J; Xie J; Zhang YS
    Small; 2019 Jun; 15(23):e1805510. PubMed ID: 31033203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeform 3D printing of vascularized tissues: Challenges and strategies.
    Lee H; Jang TS; Han G; Kim HW; Jung HD
    J Tissue Eng; 2021; 12():20417314211057236. PubMed ID: 34868539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Printed Liquids.
    Forth J; Liu X; Hasnain J; Toor A; Miszta K; Shi S; Geissler PL; Emrick T; Helms BA; Russell TP
    Adv Mater; 2018 Apr; 30(16):e1707603. PubMed ID: 29573293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical insights into bioinks for 3D printing.
    Valot L; Martinez J; Mehdi A; Subra G
    Chem Soc Rev; 2019 Jul; 48(15):4049-4086. PubMed ID: 31271159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeform 3D printing using a continuous viscoelastic supporting matrix.
    Patrício SG; Sousa LR; Correia TR; Gaspar VM; Pires LS; Luís JL; Oliveira JM; Mano JF
    Biofabrication; 2020 May; 12(3):035017. PubMed ID: 32316003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Endothelialization of Free-Form 3D Network of Interconnected Tubular Channels via Interfacial Coacervation by Aqueous-in-Aqueous Embedded Bioprinting.
    Zhang S; Qi C; Zhang W; Zhou H; Wu N; Yang M; Meng S; Liu Z; Kong T
    Adv Mater; 2023 Feb; 35(7):e2209263. PubMed ID: 36448877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ExCeL: combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Biofabrication; 2019 Apr; 11(3):035002. PubMed ID: 30769331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering.
    Chen S; Tan WS; Bin Juhari MA; Shi Q; Cheng XS; Chan WL; Song J
    Biomed Eng Lett; 2020 Nov; 10(4):453-479. PubMed ID: 33194241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.
    Xiong R; Zhang Z; Chai W; Huang Y; Chrisey DB
    Biofabrication; 2015 Dec; 7(4):045011. PubMed ID: 26693735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution 3D Printing of Freeform, Transparent Displays in Ambient Air.
    An HS; Park YG; Kim K; Nam YS; Song MH; Park JU
    Adv Sci (Weinh); 2019 Dec; 6(23):1901603. PubMed ID: 31832317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.