BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31609578)

  • 1. Structure-Dependent Modulation of Substrate Binding and Biodegradation Activity of Pirin Proteins toward Plant Flavonols.
    Guo B; Zhang Y; Hicks G; Huang X; Li R; Roy N; Jia Z
    ACS Chem Biol; 2019 Dec; 14(12):2629-2640. PubMed ID: 31609578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical analysis reveal pirins to possess quercetinase activity.
    Adams M; Jia Z
    J Biol Chem; 2005 Aug; 280(31):28675-82. PubMed ID: 15951572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new monocupin quercetinase of Streptomyces sp. FLA: identification and heterologous expression of the queD gene and activity of the recombinant enzyme towards different flavonols.
    Merkens H; Sielker S; Rose K; Fetzner S
    Arch Microbiol; 2007 Jun; 187(6):475-87. PubMed ID: 17516049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase.
    Sun YJ; Huang QQ; Li P; Zhang JJ
    Dalton Trans; 2015 Aug; 44(31):13926-38. PubMed ID: 26153684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-Specific Allosteric Modulation of the Conformational Dynamics of κB DNA by Pirin in the NF-κB Supramolecular Complex.
    Adeniran C; Hamelberg D
    Biochemistry; 2017 Sep; 56(37):5002-5010. PubMed ID: 28825294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates.
    Kooter IM; Steiner RA; Dijkstra BW; van Noort PI; Egmond MR; Huber M
    Eur J Biochem; 2002 Jun; 269(12):2971-9. PubMed ID: 12071961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pirin is an iron-dependent redox regulator of NF-κB.
    Liu F; Rehmani I; Esaki S; Fu R; Chen L; de Serrano V; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9722-7. PubMed ID: 23716661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired flavonol and quinolone dioxygenation by a non-heme iron catalyst modeling the action of flavonol and 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases.
    Pap JS; Matuz A; Baráth G; Kripli B; Giorgi M; Speier G; Kaizer J
    J Inorg Biochem; 2012 Mar; 108():15-21. PubMed ID: 22265834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu.
    Wellmann F; Lukacin R; Moriguchi T; Britsch L; Schiltz E; Matern U
    Eur J Biochem; 2002 Aug; 269(16):4134-42. PubMed ID: 12180990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex.
    Jeoung JH; Nianios D; Fetzner S; Dobbek H
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3281-4. PubMed ID: 26846734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel flavonol 2-oxoglutarate dependent dioxygenase: affinity purification, characterization, and kinetic properties.
    Anzellotti D; Ibrahim RK
    Arch Biochem Biophys; 2000 Oct; 382(2):161-72. PubMed ID: 11068865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase.
    Steiner RA; Kalk KH; Dijkstra BW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16625-30. PubMed ID: 12486225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor.
    Pang H; Bartlam M; Zeng Q; Miyatake H; Hisano T; Miki K; Wong LL; Gao GF; Rao Z
    J Biol Chem; 2004 Jan; 279(2):1491-8. PubMed ID: 14573596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid DFT study of the mechanism of quercetin 2,3-dioxygenase.
    Siegbahn PE
    Inorg Chem; 2004 Sep; 43(19):5944-53. PubMed ID: 15360243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis.
    Barney BM; Schaab MR; LoBrutto R; Francisco WA
    Protein Expr Purif; 2004 May; 35(1):131-41. PubMed ID: 15039076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis.
    Schaab MR; Barney BM; Francisco WA
    Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of the protein YhaK from Escherichia coli reveals a new subclass of redox sensitive enterobacterial bicupins.
    Gurmu D; Lu J; Johnson KA; Nordlund P; Holmgren A; Erlandsen H
    Proteins; 2009 Jan; 74(1):18-31. PubMed ID: 18561187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt.
    Merkens H; Kappl R; Jakob RP; Schmid FX; Fetzner S
    Biochemistry; 2008 Nov; 47(46):12185-96. PubMed ID: 18950192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides.
    Vogt T; Taylor LP
    Plant Physiol; 1995 Jul; 108(3):903-11. PubMed ID: 7630971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.