These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31609585)
1. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping. Che S; Behura SK; Berry V ACS Nano; 2019 Nov; 13(11):12929-12938. PubMed ID: 31609585 [TBL] [Abstract][Full Text] [Related]
2. Retained Carrier-Mobility and Enhanced Plasmonic-Photovoltaics of Graphene via ring-centered η Che S; Jasuja K; Behura SK; Nguyen P; Sreeprasad TS; Berry V Nano Lett; 2017 Jul; 17(7):4381-4389. PubMed ID: 28586228 [TBL] [Abstract][Full Text] [Related]
3. Graphene Fermi Level-Guided Attachment of Single Exoelectrogens and Induced Interfacial Doping. Nemade R; Cotts S; Berry V ACS Appl Mater Interfaces; 2024 Feb; 16(5):5548-5553. PubMed ID: 38287002 [TBL] [Abstract][Full Text] [Related]
4. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer. Hu P; Chen L; Kang X; Chen S Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382 [TBL] [Abstract][Full Text] [Related]
5. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475 [TBL] [Abstract][Full Text] [Related]
6. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures. Xia F; Shao Z; He Y; Wang R; Wu X; Jiang T; Duhm S; Zhao J; Lee ST; Jie J ACS Nano; 2016 Nov; 10(11):10283-10293. PubMed ID: 27798826 [TBL] [Abstract][Full Text] [Related]
7. One-Step RF-CVD Method for the Synthesis of Graphene Decorated with Metal and Metal Oxide Nanoparticles. Ramakrishnan S; Jelmy EJ; Senthilkumar R; Rangarajan M; Kothurkar NK J Nanosci Nanotechnol; 2018 Feb; 18(2):1089-1096. PubMed ID: 29448538 [TBL] [Abstract][Full Text] [Related]
8. Stable hole doping of graphene for low electrical resistance and high optical transparency. Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions. Dissanayake DM; Ashraf A; Dwyer D; Kisslinger K; Zhang L; Pang Y; Efstathiadis H; Eisaman MD Sci Rep; 2016 Feb; 6():21070. PubMed ID: 26867673 [TBL] [Abstract][Full Text] [Related]
10. Correlation of the Graphene Fermi-Level Shift and the Enhanced Electrochemical Performance of Graphene-Manganese Phosphate for Hybrid Supercapacitors: Raman Spectroscopy Analysis. Madito MJ ACS Appl Mater Interfaces; 2021 Aug; 13(31):37014-37026. PubMed ID: 34318656 [TBL] [Abstract][Full Text] [Related]
11. Interfacial icelike water local doping of graphene. Hong Y; Wang S; Li Q; Song X; Wang Z; Zhang X; Besenbacher F; Dong M Nanoscale; 2019 Nov; 11(41):19334-19340. PubMed ID: 31423505 [TBL] [Abstract][Full Text] [Related]
12. Graphene Interfaced with Biological Cells: Opportunities and Challenges. Nguyen P; Berry V J Phys Chem Lett; 2012 Apr; 3(8):1024-9. PubMed ID: 26286566 [TBL] [Abstract][Full Text] [Related]
13. Holey Graphene Metal Nanoparticle Composites via Crystalline Polymer Templated Etching. White DL; Burkert SC; Hwang SI; Star A Nano Lett; 2019 May; 19(5):2824-2831. PubMed ID: 30958007 [TBL] [Abstract][Full Text] [Related]
14. Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. Garg R; Rastogi SK; Lamparski M; de la Barrera SC; Pace GT; Nuhfer NT; Hunt BM; Meunier V; Cohen-Karni T ACS Nano; 2017 Jun; 11(6):6301-6311. PubMed ID: 28549215 [TBL] [Abstract][Full Text] [Related]
15. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy. Maiti R; Haldar S; Majumdar D; Singha A; Ray SK Nanotechnology; 2017 Feb; 28(7):075707. PubMed ID: 27976628 [TBL] [Abstract][Full Text] [Related]
16. Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping. Adhikari S; Perello DJ; Biswas C; Ghosh A; Luan NV; Park J; Yao F; Rotkin SV; Lee YH Nanoscale; 2016 Nov; 8(44):18710-18717. PubMed ID: 27786321 [TBL] [Abstract][Full Text] [Related]
17. Water-gated charge doping of graphene induced by mica substrates. Shim J; Lui CH; Ko TY; Yu YJ; Kim P; Heinz TF; Ryu S Nano Lett; 2012 Feb; 12(2):648-54. PubMed ID: 22260483 [TBL] [Abstract][Full Text] [Related]
18. In-situ Raman spectroscopy to elucidate the influence of adsorption in graphene electrochemistry. van den Beld WT; Odijk M; Vervuurt RH; Weber JW; Bol AA; van den Berg A; Eijkel JC Sci Rep; 2017 Mar; 7():45080. PubMed ID: 28338094 [TBL] [Abstract][Full Text] [Related]
19. Cancer Cell Hyperactivity and Membrane Dipolarity Monitoring via Raman Mapping of Interfaced Graphene: Toward Non-Invasive Cancer Diagnostics. Keisham B; Cole A; Nguyen P; Mehta A; Berry V ACS Appl Mater Interfaces; 2016 Dec; 8(48):32717-32722. PubMed ID: 27934135 [TBL] [Abstract][Full Text] [Related]
20. Insights and Implications of Intricate Surface Charge Transfer and sp Belotcerkovtceva D; Maciel RP; Berggren E; Maddu R; Sarkar T; Kvashnin YO; Thonig D; Lindblad A; Eriksson O; Kamalakar MV ACS Appl Mater Interfaces; 2022 Aug; 14(31):36209-36216. PubMed ID: 35867345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]