BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 31610298)

  • 1. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics.
    He T; Kong R; Holmes AJ; Nguyen M; Sabuncu MR; Eickhoff SB; Bzdok D; Feng J; Yeo BTT
    Neuroimage; 2020 Feb; 206():116276. PubMed ID: 31610298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.
    Cui Z; Gong G
    Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global signal regression strengthens association between resting-state functional connectivity and behavior.
    Li J; Kong R; Liégeois R; Orban C; Tan Y; Sun N; Holmes AJ; Sabuncu MR; Ge T; Yeo BTT
    Neuroimage; 2019 Aug; 196():126-141. PubMed ID: 30974241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI.
    Hebling Vieira B; Dubois J; Calhoun VD; Garrido Salmon CE
    Hum Brain Mapp; 2021 Dec; 42(18):5873-5887. PubMed ID: 34587333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NBS-Predict: A prediction-based extension of the network-based statistic.
    Serin E; Zalesky A; Matory A; Walter H; Kruschwitz JD
    Neuroimage; 2021 Dec; 244():118625. PubMed ID: 34610435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction.
    Khosla M; Jamison K; Kuceyeski A; Sabuncu MR
    Neuroimage; 2019 Oct; 199():651-662. PubMed ID: 31220576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional connectome fingerprinting using shallow feedforward neural networks.
    Sarar G; Rao B; Liu T
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33827923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering individual fingerprints in resting-state functional connectivity using deep neural networks.
    Lee J; Lee JH
    Hum Brain Mapp; 2024 Jan; 45(1):e26561. PubMed ID: 38096866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising network modelling methods for fMRI.
    Pervaiz U; Vidaurre D; Woolrich MW; Smith SM
    Neuroimage; 2020 May; 211():116604. PubMed ID: 32062083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy-Guided Spatio-Temporal Graph Convolutional Networks (AG-STGCNs) for Modeling Functional Connectivity Between Gyri and Sulci Across Multiple Task Domains.
    Jiang M; Chen Y; Yan J; Xiao Z; Mao W; Zhao B; Yang S; Zhao Z; Zhang T; Guo L; Becker B; Yao D; Kendrick KM; Jiang X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7435-7445. PubMed ID: 35930515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
    Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; Liò P; Toschi N
    Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition.
    Li Q; Zhang W; Zhao L; Wu X; Liu T
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):624-634. PubMed ID: 34357861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics.
    Thome J; Steinbach R; Grosskreutz J; Durstewitz D; Koppe G
    Hum Brain Mapp; 2022 Feb; 43(2):681-699. PubMed ID: 34655259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in directed functional brain connectivity related to age, sex and mental health.
    Lund MJ; Alnaes D; Schwab S; van der Meer D; Andreassen OA; Westlye LT; Kaufmann T
    Hum Brain Mapp; 2020 Oct; 41(15):4173-4186. PubMed ID: 32613721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
    Rastegarnia S; St-Laurent M; DuPre E; Pinsard B; Bellec P
    Neuroimage; 2023 Dec; 283():120395. PubMed ID: 37832707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.