These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31610339)

  • 1. Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds.
    Murphy AR; Haynes JM; Laslett AL; Cameron NR; O'Brien CM
    Acta Biomater; 2020 Jan; 101():102-116. PubMed ID: 31610339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells.
    Leong MF; Lu HF; Lim TC; Du C; Ma NKL; Wan ACA
    Acta Biomater; 2016 Dec; 46():266-277. PubMed ID: 27667015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation.
    Sart S; Yan Y; Li Y; Lochner E; Zeng C; Ma T; Li Y
    Acta Biomater; 2016 Jan; 30():222-232. PubMed ID: 26577988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.
    Arulmoli J; Wright HJ; Phan DTT; Sheth U; Que RA; Botten GA; Keating M; Botvinick EL; Pathak MM; Zarembinski TI; Yanni DS; Razorenova OV; Hughes CCW; Flanagan LA
    Acta Biomater; 2016 Oct; 43():122-138. PubMed ID: 27475528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted neural differentiation of murine mesenchymal stem cells by a protocol simulating the inflammatory site of neural injury.
    Chudickova M; Bruza P; Zajicova A; Trosan P; Svobodova L; Javorkova E; Kubinova S; Holan V
    J Tissue Eng Regen Med; 2017 May; 11(5):1588-1597. PubMed ID: 26118945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters.
    Lee SY; George JH; Nagel DA; Ye H; Kueberuwa G; Seymour LW
    J Tissue Eng Regen Med; 2019 Mar; 13(3):369-384. PubMed ID: 30550638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells.
    Lee YS; Arinzeh TL
    Tissue Eng Part A; 2012 Oct; 18(19-20):2063-72. PubMed ID: 22646285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk nanofibrous electrospun scaffold enhances differentiation of embryonic stem like cells derived from testis in to mature neuron.
    Bojnordi MN; Ebrahimi-Barough S; Vojoudi E; Hamidabadi HG
    J Biomed Mater Res A; 2018 Oct; 106(10):2662-2669. PubMed ID: 29901281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation puramatrix as a 3D microenvironment for neural differentiation of human breastmilk stem cells.
    Goudarzi N; Shabani R; Moradi F; Ebrahimi M; Katebi M; Jafari A; Mehdinejadiani S; Vahabzade G; Soleimani M
    Brain Res; 2024 Aug; 1836():148936. PubMed ID: 38649134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold.
    Hoveizi E; Nabiuni M; Parivar K; Ai J; Massumi M
    J Biomed Mater Res A; 2014 Nov; 102(11):4027-36. PubMed ID: 24277503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.
    Stewart E; Kobayashi NR; Higgins MJ; Quigley AF; Jamali S; Moulton SE; Kapsa RM; Wallace GG; Crook JM
    Tissue Eng Part C Methods; 2015 Apr; 21(4):385-93. PubMed ID: 25296166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells.
    Sperling LE; Reis KP; Pozzobon LG; Girardi CS; Pranke P
    J Biomed Mater Res A; 2017 May; 105(5):1333-1345. PubMed ID: 28120428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tissue-engineered bioabsorbable nerve conduit created by three-dimensional culture of induced pluripotent stem cell-derived neurospheres.
    Uemura T; Takamatsu K; Ikeda M; Okada M; Kazuki K; Ikada Y; Nakamura H
    Biomed Mater Eng; 2011; 21(5-6):333-9. PubMed ID: 22561252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods.
    El Ayachi I; Zhang J; Zou XY; Li D; Yu Z; Wei W; O'Connell KMS; Huang GT
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e1836-e1851. PubMed ID: 29139614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.
    Chandrasekaran A; Avci HX; Ochalek A; Rösingh LN; Molnár K; László L; Bellák T; Téglási A; Pesti K; Mike A; Phanthong P; Bíró O; Hall V; Kitiyanant N; Krause KH; Kobolák J; Dinnyés A
    Stem Cell Res; 2017 Dec; 25():139-151. PubMed ID: 29128818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.
    Gelmi A; Cieslar-Pobuda A; de Muinck E; Los M; Rafat M; Jager EW
    Adv Healthc Mater; 2016 Jun; 5(12):1471-80. PubMed ID: 27126086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Rett-derived neuronal progenitor cells in 3D graphene scaffold as an in vitro platform to study the effect of electrical stimulation on neuronal differentiation.
    Nguyen AT; Mattiassi S; Loeblein M; Chin E; Ma D; Coquet P; Viasnoff V; Teo EHT; Goh EL; Yim EKF
    Biomed Mater; 2018 Mar; 13(3):034111. PubMed ID: 29442069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The collagen scaffold supports hiPSC-derived NSC growth and restricts hiPSC.
    Zychowicz M; Pietrucha K; Podobinska M; Kowalska-Wlodarczyk M; Lenart J; Augustyniak J; Buzanska L
    Front Biosci (Schol Ed); 2019 Mar; 11(1):105-121. PubMed ID: 30844739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.