These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. Zheng J; Kang J; Sun C; Yang C; Wang L; Li D J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239 [TBL] [Abstract][Full Text] [Related]
9. Improvement in Mechanical Properties of 3D-Printed PEEK Structure by Nonsolvent Vapor Annealing. Chen W; Zhang X; Tan D; Xu P; Yang B; Shi K; Zhu B; Liu Q; Lei Y; Liu S; Xue L Macromol Rapid Commun; 2022 Apr; 43(7):e2100874. PubMed ID: 35139235 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and in vitro investigation of a porous PEEK foam for medical device implants. Landy BC; Vangordon SB; McFetridge PS; Sikavitsas VI; Jarman-Smith M J Appl Biomater Funct Mater; 2013 Jun; 11(1):e35-44. PubMed ID: 23413130 [TBL] [Abstract][Full Text] [Related]
11. Early revision events among patients with a three dimensional (3D) printed cellular titanium or PEEK (polyetheretherketone) spinal cage for single-level lumbar spinal fusion. Corso KA; Kothari P; Corrado K; Michielli A; Ruppenkamp J; Bowden D Expert Rev Med Devices; 2022 Feb; 19(2):195-201. PubMed ID: 34937486 [TBL] [Abstract][Full Text] [Related]
12. 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. Spece H; Yu T; Law AW; Marcolongo M; Kurtz SM J Mech Behav Biomed Mater; 2020 Sep; 109():103850. PubMed ID: 32543413 [TBL] [Abstract][Full Text] [Related]
13. Additive-manufactured Ti-6Al-4 V/Polyetheretherketone composite porous cage for Interbody fusion: bone growth and biocompatibility evaluation in a porcine model. Tsai PI; Wu MH; Li YY; Lin TH; Tsai JSC; Huang HI; Lai HJ; Lee MH; Chen CY BMC Musculoskelet Disord; 2021 Feb; 22(1):171. PubMed ID: 33573634 [TBL] [Abstract][Full Text] [Related]
14. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. Kashii M; Kitaguchi K; Makino T; Kaito T J Orthop Sci; 2020 Jul; 25(4):565-570. PubMed ID: 31375363 [TBL] [Abstract][Full Text] [Related]
15. A novel 3D printed cage with microporous structure and in vivo fusion function. Li P; Jiang W; Yan J; Hu K; Han Z; Wang B; Zhao Y; Cui G; Wang Z; Mao K; Wang Y; Cui F J Biomed Mater Res A; 2019 Jul; 107(7):1386-1392. PubMed ID: 30724479 [TBL] [Abstract][Full Text] [Related]
16. Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review. Rendas P; Figueiredo L; Machado C; Mourão A; Vidal C; Soares B Prog Biomater; 2023 Jun; 12(2):89-111. PubMed ID: 36496542 [TBL] [Abstract][Full Text] [Related]
17. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Honigmann P; Sharma N; Okolo B; Popp U; Msallem B; Thieringer FM Biomed Res Int; 2018; 2018():4520636. PubMed ID: 29713642 [TBL] [Abstract][Full Text] [Related]
18. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Zheng J; Zhao H; Dong E; Kang J; Liu C; Sun C; Li D; Wang L Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112333. PubMed ID: 34474884 [TBL] [Abstract][Full Text] [Related]
19. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. Cutler AR; Siddiqui S; Mohan AL; Hillard VH; Cerabona F; Das K J Neurosurg Spine; 2006 Dec; 5(6):534-9. PubMed ID: 17176018 [TBL] [Abstract][Full Text] [Related]
20. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]