These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31610485)

  • 1. Capacitive biocathodes driving electrotrophy towards enhanced CO
    Annie Modestra J; Venkata Mohan S
    Bioresour Technol; 2019 Dec; 294():122181. PubMed ID: 31610485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO
    Tharak A; Venkata Mohan S
    Bioresour Technol; 2021 Jan; 320(Pt A):124272. PubMed ID: 33142252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposited Hybrid Biocathode-Based CO
    Anwer AH; Khan N; Umar MF; Rafatullah M; Khan MZ
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33810075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction.
    Mohanakrishna G; Seelam JS; Vanbroekhoven K; Pant D
    Faraday Discuss; 2015; 183():445-62. PubMed ID: 26399888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO
    Thatikayala D; Min B
    Sci Total Environ; 2021 May; 768():144477. PubMed ID: 33736314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.
    Bajracharya S; Vanbroekhoven K; Buisman CJ; Pant D; Strik DP
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22292-22308. PubMed ID: 27436381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells.
    Sharma I; Ghangrekar MM
    Water Sci Technol; 2018 Feb; 77(3-4):999-1006. PubMed ID: 29488963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum to "Capacitive biocathodes driving electrotrophy towards enhanced CO
    Modestra JA; Mohan SV
    Bioresour Technol; 2021 Jun; 330():124854. PubMed ID: 33762126
    [No Abstract]   [Full Text] [Related]  

  • 12. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized conductive activated carbon-polyaniline composite anode for augmented energy recovery in microbial fuel cells.
    Yellappa M; Annie Modestra J; Rami Reddy YV; Venkata Mohan S
    Bioresour Technol; 2021 Jan; 320(Pt B):124340. PubMed ID: 33189040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.
    Strycharz-Glaven SM; Glaven RH; Wang Z; Zhou J; Vora GJ; Tender LM
    Appl Environ Microbiol; 2013 Jul; 79(13):3933-42. PubMed ID: 23603672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells.
    De Schamphelaire L; Boeckx P; Verstraete W
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1675-87. PubMed ID: 20467736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.
    Guo K; Donose BC; Soeriyadi AH; Prévoteau A; Patil SA; Freguia S; Gooding JJ; Rabaey K
    Environ Sci Technol; 2014 Jun; 48(12):7151-6. PubMed ID: 24911921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide.
    Jiang Y; Chu N; Zhang W; Ma J; Zhang F; Liang P; Zeng RJ
    Water Res; 2019 Aug; 159():87-94. PubMed ID: 31078755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.
    Bajracharya S; ter Heijne A; Dominguez Benetton X; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioresour Technol; 2015 Nov; 195():14-24. PubMed ID: 26066971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.