BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 31610494)

  • 1. Improvement in lipid production in Monoraphidium sp. QLY-1 by combining fulvic acid treatment and salinity stress.
    Li X; Li X; Han B; Zhao Y; Li T; Zhao P; Yu X
    Bioresour Technol; 2019 Dec; 294():122179. PubMed ID: 31610494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress.
    Li X; Zhang X; Zhao Y; Yu X
    Bioresour Technol; 2020 Nov; 315():123833. PubMed ID: 32683286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of lipid accumulation in Monoraphidium sp. QLY-1 by induction of strigolactone.
    Song X; Zhao Y; Li T; Han B; Zhao P; Xu JW; Yu X
    Bioresour Technol; 2019 Sep; 288():121607. PubMed ID: 31176945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction.
    Li D; Zhao Y; Ding W; Zhao P; Xu JW; Li T; Ma H; Yu X
    Bioresour Technol; 2017 Jul; 235():104-112. PubMed ID: 28365337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-aminobutyric acid coupled with copper ion stress stimulates lipid production of green microalga Monoraphidium sp. QLY-1 through multiple mechanisms.
    Li X; Gu D; You J; Qiao T; Yu X
    Bioresour Technol; 2022 May; 352():127091. PubMed ID: 35364236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.
    Zhao Y; Li D; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2018 Jul; 259():46-53. PubMed ID: 29536873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress.
    Zhao Y; Song X; Zhong DB; Yu L; Yu X
    Bioresour Technol; 2020 Feb; 297():122500. PubMed ID: 31796380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10.
    Che R; Huang L; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2017 Mar; 227():324-334. PubMed ID: 28042988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions.
    Song X; Zhao Y; Han B; Li T; Zhao P; Xu JW; Yu X
    Bioresour Technol; 2020 Jun; 306():123107. PubMed ID: 32172089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and Metabolomics Analyses Reveal the Roles of Fulvic Acid in Enhancing the Production of Astaxanthin and Lipids in
    Zhao Y; Xing H; Li X; Geng S; Ning D; Ma T; Yu X
    J Agric Food Chem; 2019 Nov; 67(45):12599-12609. PubMed ID: 31644277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production.
    El-Sheekh MM; Galal HR; Mousa ASH; Farghl AAM
    Sci Rep; 2024 Feb; 14(1):2725. PubMed ID: 38302601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of myo-inositol with salinity regulates ethylene-induced microalgal lipid hyperproduction in molasses wastewater.
    Qiao T; Gu D; Zhu L; Zhao Y; Zhong DB; Yu X
    Sci Total Environ; 2022 Apr; 818():151765. PubMed ID: 34801491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction.
    Zhao Y; Li D; Ding K; Che R; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2016 Jul; 211():669-76. PubMed ID: 27058402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Lipid Production and Molecular Dynamics under Salinity Stress in Green Microalga
    Atikij T; Syaputri Y; Iwahashi H; Praneenararat T; Sirisattha S; Kageyama H; Waditee-Sirisattha R
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31434347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production.
    Wang X; Luo SW; Luo W; Yang WD; Liu JS; Li HY
    Bioresour Technol; 2019 Apr; 277():204-210. PubMed ID: 30630660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Maurya R; Trivedi K; Patidar SK; Ghosh A; Mishra S
    Bioresour Technol; 2015; 189():341-348. PubMed ID: 25911594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis.
    Sun XM; Ren LJ; Bi ZQ; Ji XJ; Zhao QY; Huang H
    Bioresour Technol; 2018 Nov; 267():438-444. PubMed ID: 30032058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium azide intervention, salinity stress and two-step cultivation of Dunaliella tertiolecta for lipid accumulation.
    Chen HH; Xue LL; Liang MH; Jiang JG
    Enzyme Microb Technol; 2019 Aug; 127():1-5. PubMed ID: 31088611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching.
    Kato Y; Ho SH; Vavricka CJ; Chang JS; Hasunuma T; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1484-1490. PubMed ID: 28624244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing biomass, lipid production, and nutrient utilization of the microalga Monoraphidium sp. QLZ-3 in walnut shell extracts supplemented with carbon dioxide.
    Dong X; Han B; Zhao Y; Ding W; Yu X
    Bioresour Technol; 2019 Sep; 287():121419. PubMed ID: 31078811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.