These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 31610651)
21. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834 [TBL] [Abstract][Full Text] [Related]
22. Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems. Liu Y; Wang W; Gu K; Yao J; Shao Z; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(24):29008-29020. PubMed ID: 34121382 [TBL] [Abstract][Full Text] [Related]
23. Ionic Conductive Cellulose-Based Hydrogels with Superior Long-Lasting Moisture and Antifreezing Features for Flexible Strain Sensor Applications. Wang Y; Liu H; Yu J; Liao H; Yang L; Ren E; Lin S; Lan J Biomacromolecules; 2024 Feb; 25(2):838-852. PubMed ID: 38164823 [TBL] [Abstract][Full Text] [Related]
24. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices. Yang B; Yuan W ACS Appl Mater Interfaces; 2019 May; 11(18):16765-16775. PubMed ID: 30983316 [TBL] [Abstract][Full Text] [Related]
25. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing. Mu G; He W; He J; Muhammad Y; Shi Z; Zhang B; Zhou L; Zhao Z; Zhao Z Int J Biol Macromol; 2023 May; 236():123936. PubMed ID: 36894064 [TBL] [Abstract][Full Text] [Related]
26. Heat- and freeze-tolerant organohydrogel with enhanced ionic conductivity over a wide temperature range for highly mechanoresponsive smart paint. Wu X; Pi W; Hu X; He X; Zhu Y; Wang J; Yang S J Colloid Interface Sci; 2022 Feb; 608(Pt 2):2158-2168. PubMed ID: 34773850 [TBL] [Abstract][Full Text] [Related]
27. Conductive Hydrogels with Ultrastretchability and Adhesiveness for Flame- and Cold-Tolerant Strain Sensors. Liu C; Zhang R; Li P; Qu J; Chao P; Mo Z; Yang T; Qing N; Tang L ACS Appl Mater Interfaces; 2022 Jun; 14(22):26088-26098. PubMed ID: 35608957 [TBL] [Abstract][Full Text] [Related]
28. Facile Preparation of a Photo-Cross-Linked Silk Fibroin-Poly Ionic Liquid Hydrogel with Antifreezing and Ion Conductive Properties. Yang G; Chen X; Shi W; Chen N; Liu Y; Zhang B; Shao Z ACS Appl Mater Interfaces; 2024 Jan; 16(1):1543-1552. PubMed ID: 38163251 [TBL] [Abstract][Full Text] [Related]
29. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Li M; Chen D; Sun X; Xu Z; Yang Y; Song Y; Jiang F Carbohydr Polym; 2022 May; 284():119199. PubMed ID: 35287914 [TBL] [Abstract][Full Text] [Related]
30. Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Tong R; Chen G; Tian J; He M Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835891 [TBL] [Abstract][Full Text] [Related]
31. Antifreezing, Antidrying, and Conductive Hydrogels for Electronic Skin Applications at Ultralow Temperatures. Quan Q; Zhao T; Luo Z; Li BX; Sun H; Zhao HY; Yu ZZ; Yang D ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593248 [TBL] [Abstract][Full Text] [Related]
32. Rapid Preparation of Antifreezing Conductive Hydrogels for Flexible Strain Sensors and Supercapacitors. Song Y; Niu L; Ma P; Li X; Feng J; Liu Z ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763089 [TBL] [Abstract][Full Text] [Related]
33. Superelastic, Antifreezing, Antidrying, and Conductive Organohydrogels for Wearable Strain Sensors. Li Q; Chen J; Zhang Y; Chi C; Dong G; Lin J; Chen Q ACS Appl Mater Interfaces; 2021 Nov; 13(43):51546-51555. PubMed ID: 34689543 [TBL] [Abstract][Full Text] [Related]
34. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors. Wang Z; Ma Z; Wang S; Pi M; Wang X; Li M; Lu H; Cui W; Ran R Carbohydr Polym; 2022 Dec; 298():120128. PubMed ID: 36241329 [TBL] [Abstract][Full Text] [Related]
35. Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. Zhang X; Zhang G; Huang X; He J; Bai Y; Zhang L ACS Appl Mater Interfaces; 2022 Jul; 14(26):30256-30267. PubMed ID: 35749282 [TBL] [Abstract][Full Text] [Related]
36. Copolymer-grafted cellulose nanocrystal induced nanocomposite hydrogels with enhanced strength, high elasticity and adhesiveness for flexible strain and pressure sensors. Li B; Chen Y; Wu W; Cao X; Luo Z Carbohydr Polym; 2023 Oct; 317():121092. PubMed ID: 37364960 [TBL] [Abstract][Full Text] [Related]
37. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance. Pang J; Wang L; Xu Y; Wu M; Wang M; Liu Y; Yu S; Li L Carbohydr Polym; 2020 Jul; 240():116360. PubMed ID: 32475541 [TBL] [Abstract][Full Text] [Related]
38. Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. Ma D; Wu X; Wang Y; Liao H; Wan P; Zhang L ACS Appl Mater Interfaces; 2019 Nov; 11(44):41701-41709. PubMed ID: 31625378 [TBL] [Abstract][Full Text] [Related]
39. Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. Wang W; Liu Y; Wang S; Fu X; Zhao T; Chen X; Shao Z ACS Appl Mater Interfaces; 2020 Jun; 12(22):25353-25362. PubMed ID: 32347700 [TBL] [Abstract][Full Text] [Related]