These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 31610714)
1. Recurrent Neural Networks for Early Detection of Heart Failure From Longitudinal Electronic Health Record Data: Implications for Temporal Modeling With Respect to Time Before Diagnosis, Data Density, Data Quantity, and Data Type. Chen R; Stewart WF; Sun J; Ng K; Yan X Circ Cardiovasc Qual Outcomes; 2019 Oct; 12(10):e005114. PubMed ID: 31610714 [TBL] [Abstract][Full Text] [Related]
2. Early Detection of Heart Failure Using Electronic Health Records: Practical Implications for Time Before Diagnosis, Data Diversity, Data Quantity, and Data Density. Ng K; Steinhubl SR; deFilippi C; Dey S; Stewart WF Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):649-658. PubMed ID: 28263940 [TBL] [Abstract][Full Text] [Related]
3. Using recurrent neural network models for early detection of heart failure onset. Choi E; Schuetz A; Stewart WF; Sun J J Am Med Inform Assoc; 2017 Mar; 24(2):361-370. PubMed ID: 27521897 [TBL] [Abstract][Full Text] [Related]
4. Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network. Huang J; Cai Y; Wu X; Huang X; Liu J; Hu D Comput Methods Programs Biomed; 2024 Nov; 256():108403. PubMed ID: 39236563 [TBL] [Abstract][Full Text] [Related]
5. LSTM Model for Prediction of Heart Failure in Big Data. Maragatham G; Devi S J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519 [TBL] [Abstract][Full Text] [Related]
6. Endpoint prediction of heart failure using electronic health records. Chu J; Dong W; Huang Z J Biomed Inform; 2020 Sep; 109():103518. PubMed ID: 32721582 [TBL] [Abstract][Full Text] [Related]
7. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
8. Representation learning in intraoperative vital signs for heart failure risk prediction. Chen Y; Qi B BMC Med Inform Decis Mak; 2019 Dec; 19(1):260. PubMed ID: 31818298 [TBL] [Abstract][Full Text] [Related]
9. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150 [TBL] [Abstract][Full Text] [Related]
10. Early Detection of Heart Failure With Reduced Ejection Fraction Using Perioperative Data Among Noncardiac Surgical Patients: A Machine-Learning Approach. Mathis MR; Engoren MC; Joo H; Maile MD; Aaronson KD; Burns ML; Sjoding MW; Douville NJ; Janda AM; Hu Y; Najarian K; Kheterpal S Anesth Analg; 2020 May; 130(5):1188-1200. PubMed ID: 32287126 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related]
12. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study. Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055 [TBL] [Abstract][Full Text] [Related]
13. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. Rasmy L; Wu Y; Wang N; Geng X; Zheng WJ; Wang F; Wu H; Xu H; Zhi D J Biomed Inform; 2018 Aug; 84():11-16. PubMed ID: 29908902 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs. Barton C; Chettipally U; Zhou Y; Jiang Z; Lynn-Palevsky A; Le S; Calvert J; Das R Comput Biol Med; 2019 Jun; 109():79-84. PubMed ID: 31035074 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model. Hu SB; Wong DJ; Correa A; Li N; Deng JC PLoS One; 2016; 11(8):e0161401. PubMed ID: 27532679 [TBL] [Abstract][Full Text] [Related]
16. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation. Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616 [TBL] [Abstract][Full Text] [Related]
17. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]
18. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]