These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31610861)

  • 1. Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration.
    Quintá HR; Barrantes FJ
    Curr Top Membr; 2019; 84():169-185. PubMed ID: 31610861
    [No Abstract]   [Full Text] [Related]  

  • 2. Axolemmal repair requires proteins that mediate synaptic vesicle fusion.
    Detrait E; Eddleman CS; Yoo S; Fukuda M; Nguyen MP; Bittner GD; Fishman HM
    J Neurobiol; 2000 Sep; 44(4):382-91. PubMed ID: 10945894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury.
    Stone JR; Okonkwo DO; Dialo AO; Rubin DG; Mutlu LK; Povlishock JT; Helm GA
    Exp Neurol; 2004 Nov; 190(1):59-69. PubMed ID: 15473980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal structure and function after axolemmal leakage in the squid giant axon.
    Gallant PE; Galbraith JA
    J Neurotrauma; 1997 Nov; 14(11):811-22. PubMed ID: 9421453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change.
    Povlishock JT; Pettus EH
    Acta Neurochir Suppl; 1996; 66():81-6. PubMed ID: 8780803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury.
    Eddleman CS; Ballinger ML; Smyers ME; Fishman HM; Bittner GD
    J Neurosci; 1998 Jun; 18(11):4029-41. PubMed ID: 9592084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-fracture and cytochemical evidence for structural and functional alteration in the axolemma and myelin sheath of adult guinea pig optic nerve fibers after stretch injury.
    Maxwell WL; Kosanlavit R; McCreath BJ; Reid O; Graham DI
    J Neurotrauma; 1999 Apr; 16(4):273-84. PubMed ID: 10225214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural mechanisms and artificial PEG-induced mechanism that repair traumatic damage to the plasmalemma in eukaryotes.
    Vargas SA; Bittner GD
    Curr Top Membr; 2019; 84():129-167. PubMed ID: 31610860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sealing frequency of B104 cells declines exponentially with decreasing transection distance from the axon hillock.
    McGill CH; Bhupanapadu Sunkesula SR; Poon AD; Mikesh M; Bittner GD
    Exp Neurol; 2016 May; 279():149-158. PubMed ID: 26851541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of axolemmal disruption in guinea pig spinal cord following compression.
    Shi R
    J Neurocytol; 2004 Mar; 33(2):203-11. PubMed ID: 15322378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability.
    Pettus EH; Povlishock JT
    Brain Res; 1996 May; 722(1-2):1-11. PubMed ID: 8813344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord.
    Nehrt A; Hamann K; Ouyang H; Shi R
    J Neurotrauma; 2010 Jan; 27(1):151-61. PubMed ID: 19691421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an axolemma-enriched fraction from peripheral nerve.
    Yoshino JE; Griffin JW; DeVries GH
    J Neurochem; 1983 Oct; 41(4):1126-30. PubMed ID: 6311977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane turnover and receptor trafficking in regenerating axons.
    Hausott B; Klimaschewski L
    Eur J Neurosci; 2016 Feb; 43(3):309-17. PubMed ID: 26222895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury.
    Okonkwo DO; Povlishock JT
    J Cereb Blood Flow Metab; 1999 Apr; 19(4):443-51. PubMed ID: 10197514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea-pig spinal cord.
    Shi R; Luo J; Peasley M
    Neuroscience; 2002; 115(2):337-40. PubMed ID: 12421600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane ultrastructure of developing axons in glial cell deficient rat spinal cord.
    Black JA; Sims TJ; Waxman SG; Gilmore SA
    J Neurocytol; 1985 Feb; 14(1):79-104. PubMed ID: 4009213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change.
    Pettus EH; Christman CW; Giebel ML; Povlishock JT
    J Neurotrauma; 1994 Oct; 11(5):507-22. PubMed ID: 7861444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve.
    Black JA; Waxman SG
    Dev Biol; 1986 Jun; 115(2):301-12. PubMed ID: 2423398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.