These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Ong S; Liu H; Qiu X; Bhat G; Pidgeon C Anal Chem; 1995 Feb; 67(4):755-62. PubMed ID: 7702190 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler. Abraham MH; Chadha HS; Whiting GS; Mitchell RC J Pharm Sci; 1994 Aug; 83(8):1085-100. PubMed ID: 7983591 [TBL] [Abstract][Full Text] [Related]
5. Characterization of microemulsion liquid chromatography systems by solvation parameter model and comparison with other physicochemical and biological processes. Liu J; Sun J; Wang Y; Liu X; Sun Y; Xu H; He Z J Chromatogr A; 2007 Sep; 1164(1-2):129-38. PubMed ID: 17645883 [TBL] [Abstract][Full Text] [Related]
6. Determination of lipid-water partition coefficient of neutral and ionic drugs by liposome electrokinetic chromatography. Jiang H; Zhang H; Yin SJ; Lu M; Wang X; Yang FQ Electrophoresis; 2021 Aug; 42(14-15):1436-1449. PubMed ID: 33908064 [TBL] [Abstract][Full Text] [Related]
7. Separation methods for estimating octanol-water partition coefficients. Poole SK; Poole CF J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Nov; 797(1-2):3-19. PubMed ID: 14630140 [TBL] [Abstract][Full Text] [Related]
8. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Stępnik KE; Malinowska I J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703 [TBL] [Abstract][Full Text] [Related]
9. Molecular factors influencing retention on immobilized artifical membranes (IAM) compared to partitioning in liposomes and n-octanol. Taillardat-Bertschinger A; Martinet CA; Carrupt PA; Reist M; Caron G; Fruttero R; Testa B Pharm Res; 2002 Jun; 19(6):729-37. PubMed ID: 12134941 [TBL] [Abstract][Full Text] [Related]
10. Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography. Lepont C; Poole CF J Chromatogr A; 2002 Feb; 946(1-2):107-24. PubMed ID: 11873960 [TBL] [Abstract][Full Text] [Related]
11. Revisiting blood-brain barrier: A chromatographic approach. Subirats X; Muñoz-Pascual L; Abraham MH; Rosés M J Pharm Biomed Anal; 2017 Oct; 145():98-109. PubMed ID: 28654782 [TBL] [Abstract][Full Text] [Related]
12. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. Elnaggar YS; El-Refaie WM; El-Massik MA; Abdallah OY J Control Release; 2014 Apr; 180():10-24. PubMed ID: 24531009 [TBL] [Abstract][Full Text] [Related]
13. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants. Yang S; Khaledi MG Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000 [TBL] [Abstract][Full Text] [Related]
14. Determination of the lipophilicity (log P o/w) of organic compounds by microemulsion liquid chromatography. Xu L; Li L; Huang J; Yu S; Wang J; Li N J Pharm Biomed Anal; 2015 Jan; 102():409-16. PubMed ID: 25459940 [TBL] [Abstract][Full Text] [Related]
15. Micellar selectivity triangle for classification of chemical selectivity in electrokinetic chromatography. Fu C; Khaledi MG J Chromatogr A; 2009 Mar; 1216(10):1891-900. PubMed ID: 19181322 [TBL] [Abstract][Full Text] [Related]
16. Immobilised artificial membrane liquid chromatography vs liposome electrokinetic capillary chromatography: Suitability in drug/bio membrane partitioning studies and effectiveness in the assessment of the passage of drugs through the respiratory mucosa. Orzel D; Ravald H; Dillon A; Rantala J; Wiedmer SK; Russo G J Chromatogr A; 2024 Oct; 1734():465286. PubMed ID: 39191185 [TBL] [Abstract][Full Text] [Related]
17. Characterization of immobilized artificial membrane (IAM) and XTerra columns by means of chromatographic models. Lázaro E; Ràfols C; Rosés M J Chromatogr A; 2005 Jul; 1081(2):163-73. PubMed ID: 16038206 [TBL] [Abstract][Full Text] [Related]
18. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. Valko K; Du CM; Bevan CD; Reynolds DP; Abraham MH J Pharm Sci; 2000 Aug; 89(8):1085-96. PubMed ID: 10906732 [TBL] [Abstract][Full Text] [Related]
20. Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions. Subirats X; Abraham MH; Rosés M Anal Chim Acta; 2019 Dec; 1092():132-143. PubMed ID: 31708026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]