BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31611292)

  • 1. Environmental entrainment demonstrates natural circadian rhythmicity in the cnidarian
    Tarrant AM; Helm RR; Levy O; Rivera HE
    J Exp Biol; 2019 Nov; 222(Pt 21):. PubMed ID: 31611292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory conflict disrupts circadian rhythms in the sea anemone
    Berger CA; Tarrant AM
    Elife; 2023 Apr; 12():. PubMed ID: 37022138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupling behavioral and transcriptional responses to color in an eyeless cnidarian.
    Leach WB; Reitzel AM
    BMC Genomics; 2020 May; 21(1):361. PubMed ID: 32410571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis.
    Oren M; Tarrant AM; Alon S; Simon-Blecher N; Elbaz I; Appelbaum L; Levy O
    Sci Rep; 2015 Jun; 5():11418. PubMed ID: 26081482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of circadian behavior in the starlet sea anemone, Nematostella vectensis.
    Hendricks WD; Byrum CA; Meyer-Bernstein EL
    PLoS One; 2012; 7(10):e46843. PubMed ID: 23056482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian.
    Leach WB; Macrander J; Peres R; Reitzel AM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Jun; 26():40-49. PubMed ID: 29605490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis.
    Weizman EN; Tannenbaum M; Tarrant AM; Hakim O; Levy O
    PLoS Genet; 2019 Nov; 15(11):e1008397. PubMed ID: 31693674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light entrained rhythmic gene expression in the sea anemone Nematostella vectensis: the evolution of the animal circadian clock.
    Reitzel AM; Behrendt L; Tarrant AM
    PLoS One; 2010 Sep; 5(9):e12805. PubMed ID: 20877728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues.
    Aguillon R; Rinsky M; Simon-Blecher N; Doniger T; Appelbaum L; Levy O
    Elife; 2024 May; 12():. PubMed ID: 38743049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson.
    Maas AE; Jones IT; Reitzel AM; Tarrant AM
    Biol Open; 2016 Jan; 5(2):161-4. PubMed ID: 26772201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional remodelling upon light removal in a model cnidarian: Losses and gains in gene expression.
    Leach WB; Reitzel AM
    Mol Ecol; 2019 Jul; 28(14):3413-3426. PubMed ID: 31264275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
    Gerkema MP; Daan S; Wilbrink M; Hop MW; van der Leest F
    J Biol Rhythms; 1993; 8(2):151-71. PubMed ID: 8369551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythms of locomotor activity in zebrafish.
    Hurd MW; Debruyne J; Straume M; Cahill GM
    Physiol Behav; 1998 Dec; 65(3):465-72. PubMed ID: 9877412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily rhythms of physiological parameters in the dromedary camel under natural and laboratory conditions.
    Al-Haidary AA; Abdoun KA; Samara EM; Okab AB; Sani M; Refinetti R
    Res Vet Sci; 2016 Aug; 107():273-277. PubMed ID: 27474007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat.
    Schwimmer H; Mursu N; Haim A
    Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium.
    Sorek M; Schnytzer Y; Waldman Ben-Asher H; Caspi VC; Chen CS; Miller DJ; Levy O
    Microbiome; 2018 May; 6(1):83. PubMed ID: 29739445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.